Publications

Found 8136 results
2016
C. H. L. Imperador, Alevi, K. C. C., Oliveira, J., Rosa, J. A., Azeredo-Oliveira, M. T. V., Imperador, C. H. L., Alevi, K. C. C., Oliveira, J., Rosa, J. A., Azeredo-Oliveira, M. T. V., Imperador, C. H. L., Alevi, K. C. C., Oliveira, J., Rosa, J. A., and Azeredo-Oliveira, M. T. V., Cytogenetic analysis of Triatoma pseudomaculata Corrêa and Espínola, 1964 (Hemiptera, Triatominae) from different Brazilian states, vol. 15, p. -, 2016.
D. D. Zhou, Yao, L., Guo, K. M., Lu, C. W., Zhou, D. D., Yao, L., Guo, K. M., and Lu, C. W., Cytogenetic evaluation of cataract patients occupationally exposed to ionizing radiation in northeast China, vol. 15, p. -, 2016.
S. M. J. Mortazavi, Mortazavi, S. A. R., Paknahad, M., Mortazavi, S. M. J., Mortazavi, S. A. R., Paknahad, M., Mortazavi, S. M. J., Mortazavi, S. A. R., and Paknahad, M., Cytogenetic evaluation of cataract patients occupationally exposed to ionizing radiation in northeast China, vol. 15, no. 4, p. -, 2016.
REFERENCES Kemerink GJ, Frantzen MJ, de Jong P, Wildberger JE, et al (2011). Less radiation in a radiology department than at home. Insights Imaging 2: 275-280. http://dx.doi.org/10.1007/s13244-011-0074-7 Mortazavi SM, et al (2015). Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel. Cytokine 76: 594. http://dx.doi.org/10.1016/j.cyto.2015.04.007 Mortazavi SM, Jooyan N, et al (2015). Assessment of selected B cells populations in the workers of X-ray departments. Int. J. Occup. Med. Environ. Health 28: 405-406. Zhou DD, Yao L, Guo KM and Lu CW (2016). Cytogenetic evaluation of cataract patients occupationally exposed to ionizing radiation in northeast China. Genet. Mol. Res. 15: gmr.15038687.
P. A. Koşar, Koçer, M., Çelik, D. A., Ozcelik, N., Koşar, P. A., Koçer, M., Çelik, D. A., Ozcelik, N., Koşar, P. A., Koçer, M., Çelik, D. A., and Ozcelik, N., Cytogenetic findings in patients diagnosed with breast cancer having undergone adjuvant chemotherapy regimens, vol. 15, p. -, 2016.
N. Imir, Aydemir, E., Simsek, E., Gokturk, R. S., Yesilada, E., Fiskin, K., Imir, N., Aydemir, E., Simsek, E., Gokturk, R. S., Yesilada, E., Fiskin, K., Imir, N., Aydemir, E., Simsek, E., Gokturk, R. S., Yesilada, E., and Fiskin, K., Cytotoxic and immunomodulatory effects of Ebenus boissieri Barbey on breast cancer cells, vol. 15, p. -, 2016.
H. Yang, Wu, Q. Y., Lao, C. S., Li, M. Y., Gao, Y., Zheng, Y., Shi, B., Yang, H., Wu, Q. Y., Lao, C. S., Li, M. Y., Gao, Y., Zheng, Y., and Shi, B., Cytotoxicity and DNA damage in mouse macrophages exposed to silica nanoparticles, vol. 15, p. -, 2016.
B. Hu, Yu, B., Tang, D., Li, S., Wu, Y., Hu, B., Yu, B., Tang, D., Li, S., and Wu, Y., Daidzein promotes osteoblast proliferation and differentiation in OCT1 cells through stimulating the activation of BMP-2/Smads pathway, vol. 15, p. -, 2016.
M. Jargosch, Kröger, S., Gralinska, E., Klotz, U., Fang, Z., Chen, W., Leser, U., Selbig, J., Groth, D., Baumgrass, R., Jargosch, M., Kröger, S., Gralinska, E., Klotz, U., Fang, Z., Chen, W., Leser, U., Selbig, J., Groth, D., and Baumgrass, R., Data integration for identification of important transcription factors of STAT6-mediated cell fate decisions, vol. 15, p. -, 2016.
D. Wang, Ren, G. F., Zhang, H. Z., Yi, C. Y., and Peng, Z. J., A de novo 2q35-q36.1 deletion incorporating IHH in a Chinese boy (47,XYY) with syndactyly, type III Waardenburg syndrome, and congenital heart disease., Genet Mol Res, vol. 15, no. 4, 2016.
P. C. Guo, Yan, S. Q., Si, S., Bai, C. Y., Zhao, Y., Zhang, Y., Yao, J. Y., Li, Y. M., Guo, P. C., Yan, S. Q., Si, S., Bai, C. Y., Zhao, Y., Zhang, Y., Yao, J. Y., Li, Y. M., Guo, P. C., Yan, S. Q., Si, S., Bai, C. Y., Zhao, Y., Zhang, Y., Yao, J. Y., and Li, Y. M., De novo assembly and characterization of farmed blue fox (Alopex lagopus) global transcriptome using Illumina paired-end sequencing, vol. 15, p. -, 2016.
S. Han, Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., Shi, H., Han, S., Wu, Z., Wang, X., Huang, K., Jin, Y., Yang, W., and Shi, H., De novo assembly and characterization of Gleditsia sinensis transcriptome and subsequent gene identification and SSR mining, vol. 15, p. -, 2016.
L. L. Li, Zhang, H. G., Shao, X. G., Gao, J. C., Zhang, H. Y., Liu, R. Z., Li, L. L., Zhang, H. G., Shao, X. G., Gao, J. C., Zhang, H. Y., and Liu, R. Z., De novo interstitial deletion in the long arm of chromosome 11: a case report, vol. 15, p. -, 2016.
L. Q. Li, Li, J., Chen, Y., Lu, Y. F., Lu, L. M., Li, L. Q., Li, J., Chen, Y., Lu, Y. F., and Lu, L. M., De novo transcriptome analysis of tobacco seedlings and identification of the early response gene network under low-potassium stress, vol. 15, p. -, 2016.
X. J. Wang, Xia, M., Bi, W. P., Wang, X. J., Xia, M., Bi, W. P., Wang, X. J., Xia, M., Bi, W. P., Wang, X. J., Xia, M., and Bi, W. P., Decreased expression of miR-874 and its tumor suppressive function in human colorectal cancer, vol. 15. p. -, 2016.
H. B. Man, Bi, W. P., Man, H. H., Man, H. B., Bi, W. P., Man, H. H., Man, H. B., Bi, W. P., and Man, H. H., Decreased microRNA-198 expression and its prognostic significance in human glioma, vol. 15. p. -, 2016.
T. Tang, Zhang, G. C., Li, C. F., Liu, Y. F., Wang, W. Y., Tang, T., Zhang, G. C., Li, C. F., Liu, Y. F., Wang, W. Y., Tang, T., Zhang, G. C., Li, C. F., Liu, Y. F., and Wang, W. Y., Decreased miR-452 expression in human colorectal cancer and its tumor suppressive function, vol. 15. p. -, 2016.
X. Li, Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., and Han, D., Deep RNA sequencing elucidates microRNA-regulated molecular pathways in ischemic cardiomyopathy and nonischemic cardiomyopathy, vol. 15, p. -, 2016.
L. C. Wu, Liu, C., Jiang, M. R., Jiang, Y. M., Wang, Q. H., Lu, Z. Y., Wang, S. J., Yang, W. L., Shao, Y. X., Wu, L. C., Liu, C., Jiang, M. R., Jiang, Y. M., Wang, Q. H., Lu, Z. Y., Wang, S. J., Yang, W. L., and Shao, Y. X., Defective eyelid leading edge cell migration in C57BL/6-corneal opacity mice with an “eye open at birth” phenotype, vol. 15, p. -, 2016.
K. C. C. Alevi, Moreira, F. F. F., Jurberg, J., Azeredo-Oliveira, M. T. V., Alevi, K. C. C., Moreira, F. F. F., Jurberg, J., Azeredo-Oliveira, M. T. V., Alevi, K. C. C., Moreira, F. F. F., Jurberg, J., and Azeredo-Oliveira, M. T. V., Description of the diploid chromosome set of Triatoma pintodiasi (Hemiptera, Triatominae), vol. 15, p. -, 2016.
C. A. Banho, Alevi, K. C. C., Pereira, L. L. V., Souza-Firmino, T. S., Itoyama, M. M., Banho, C. A., Alevi, K. C. C., Pereira, L. L. V., Souza-Firmino, T. S., Itoyama, M. M., Banho, C. A., Alevi, K. C. C., Pereira, L. L. V., Souza-Firmino, T. S., and Itoyama, M. M., Description of the pre-reductional sex chromosome during male meiosis of Pachylis laticornis (Heteroptera: Coreidae), vol. 15, p. -, 2016.
G. X. E, Zhao, Y. J., Ma, Y. H., Cao, G. L., He, J. N., Na, R. S., Zhao, Z. Q., Jiang, C. D., Zhang, J. H., Arlvd, S., Chen, L. P., Qiu, X. Y., Hu, W., Huang, Y. F., E, G. X., Zhao, Y. J., Ma, Y. H., Cao, G. L., He, J. N., Na, R. S., Zhao, Z. Q., Jiang, C. D., Zhang, J. H., Arlvd, S., Chen, L. P., Qiu, X. Y., Hu, W., and Huang, Y. F., Desmoglein 4 diversity and correlation analysis with coat color in goat, vol. 15, p. -, 2016.
K. C. N. Rabelo, Albuquerque, C. M. R., Tavares, V. B., Santos, S. M., Souza, C. A., Oliveira, T. C., Moura, R. R., Brandão, L. A. C., Crovella, S., Rabelo, K. C. N., Albuquerque, C. M. R., Tavares, V. B., Santos, S. M., Souza, C. A., Oliveira, T. C., Moura, R. R., Brandão, L. A. C., and Crovella, S., Detecting multiple DNA human profile from a mosquito blood meal, vol. 15, p. -, 2016.
L. Hua, Zheng, W. Y., Xia, H., Zhou, P., Hua, L., Zheng, W. Y., Xia, H., and Zhou, P., Detecting the potential cancer association or metastasis by multi-omics data analysis, vol. 15, p. -, 2016.
F. F. Coelho, Marques, F. K., Gonçalves, M. S., Almeida, V. C. O., Mateo, E. C. C., Ferreira, A. C. S., Coelho, F. F., Marques, F. K., Gonçalves, M. S., Almeida, V. C. O., Mateo, E. C. C., and Ferreira, A. C. S., Detection of aneuploidies in spontaneous abortions by quantitative fluorescent PCR with short tandem repeat markers: a retrospective study, vol. 15, p. -, 2016.
C. A. M. Oliveira, Kommers, C. M., Lehmann, F. K. M., Fonseca, A. S. K., Ikuta, N., and Lunge, V. R., Detection of genetically modified maize in processed products, dry grains, and corn ears intended for fresh consumption in South Brazil, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSThe authors thank the students of Laboratório de Diagnóstico Molecular of ULBRA for their technical collaboration in this study. The authors also thank FAPERGS for the scientific initiation scholarship awarded to the author C.A.M. Oliveira and CNPq for research grants to C.M. Kommers, N. Ikuta, and V.R. Lunge. REFERENCESBoom R, Sol CJ, Salimans MM, Jansen CL, et al (1990). Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28: 495-503. Branquinho MR, Gomes DMV, Ferreira RTB, et al, Lawson-Ferreira, et al. (2013). Detection of genetically modified maize events in Brazilian maize-derived food products. Food Sci. Technol. (Campinas) 33: 399-403. http://dx.doi.org/10.1590/S0101-20612013005000063 Brasil (2003). Decreto n° 4.680, 24 de Abril de 2003. Regulamenta o acesso a informação (Lei n. 8078, 11 de Setembro de 1990) concernente a alimentos e ingredientes geneticamente modificados. D.O.U. Diário Oficial da União, Brasília, DF. Available at [http://www.planalto.gov.br/ccivil_03/decreto/2003/d4680.htm]. Accessed February 25, 2016. Cantelmo NF, Von Pinho EVR, Von Pinho RG, Von Pinho IV, et al (2013). Detection of transgenic events in maize using immunochromatographic strip test and conventional PCR. Cienc. Agrotec. 37: 404-409. http://dx.doi.org/10.1590/S1413-70542013000500003 CIB (2011). Conselho de Informação sobre Biotecnologia - Coexistência de Milho GM e não-GM em cultivos comerciais. Available at [cib.org.br/wp-content/uploads/2011/10/estudos_cientificos_ambiental_09.pdf]. Acessed June 04, 2016. CONAB (2015). Companhia Nacional de Abastecimento - Levantamento de Safra 2014/15. Available at [http://www.conab.gov.br/OlalaCMS/uploads/arquivos/15_10_16_10_52_19_safras_outu_2015.pdf]. Accessed October 27, 2015. Conceição FR, Moreira AN, Binsfeld PC, et al (2006). Detecção e quantificação de organismos geneticamente modificados em alimentos e ingredientes alimentares. Cienc. Rural 36: 315-324. http://dx.doi.org/10.1590/S0103-84782006000100053 Corbisier P, Bhat S, Partis L, Xie VR, et al (2010). Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal. Bioanal. Chem. 396: 2143-2150. http://dx.doi.org/10.1007/s00216-009-3200-3 Cruz JC (2014). Embrapa Milho e Sorgo. 478 Cultivares de milho estão disponíveis no mercado de sementes do Brasil para a safra 2014/15. Available at [http://www.cnpms.embrapa.br/milho/cultivares/]. Accessed December 15, 2015. Cruz JC (2015). Embrapa Milho e Sorgo. 477 Cultivares de milho estão disponíveis no mercado de sementes do Brasil para a safra 2015/16. Available at [http://www.cnpms.embrapa.br/milho/cultivares/]. Accessed December 17, 2015. Devos Y, Demont M, Dillen K, Reheul D, et al (2009). Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron. Sustain. 29: 11-30. http://dx.doi.org/10.1051/agro:2008051 Dinon AZ, Prins TW, van Dijk JP, Arisi ACM, et al (2011). Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms. Anal. Bioanal. Chem. 400: 1433-1442. http://dx.doi.org/10.1007/s00216-011-4875-9 Huber I, Block A, Sebah D, Debode F, et al (2013). Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed. J. Agric. Food Chem. 61: 10293-10301. http://dx.doi.org/10.1021/jf402448y Hutchison WD, Burkness EC, Mitchell PD, Moon RD, et al (2010). Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330: 222-225. http://dx.doi.org/10.1126/science.1190242 James C (2014). Global review of commercialized transgenic crops: 2014. The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Available at [http://www.isaaa.org/gmapprovaldatabase/approvedeventsin/default.asp?CountryID=BR&Country=Brazil]. Accessed November 25, 2015. Lopes AD, Scapim CA, Mangolin CA, Machado MF, et al (2014). Genetic divergence among sweet corn lines estimated by microsatellite markers. Genet. Mol. Res. 13: 10415-10426. http://dx.doi.org/10.4238/2014.December.12.3 MAPA (2015). Ministério da Agricultura, Pecuária e Abastecimento - Legislação de Orgânicos. Available at [http://www.agricultura.gov.br/arq_editor/file/Desenvolvimento_Sustentavel/Organicos/Legislacao/Nacional/Lei_n_010_831_de_23-12-2003.pdf]. Accessed March 23, 2016. Marinho CD, Martins FJ, Amaral Júnior AT, Gonçalves LS, et al (2014). Genetically modified crops: Brazilian law and overview. Genet. Mol. Res. 13: 5221-5240. http://dx.doi.org/10.4238/2014.July.7.15 MDA (2015). Ministério Desenvolvimento Agrário - Agricultura familiar produz 70% dos alimentos consumidos pelos brasileiros. Available at [http://www.mda.gov.br/]. Accessed November 12, 2015. Meriç S, Çakir O, Turgut-Kara N, Arı S, et al (2014). Detection of genetically modified maize and soybean in feed samples. Genet. Mol. Res. 13: 1160-1168. http://dx.doi.org/10.4238/2014.February.25.2 Nascimento VE, Von Pinho ÉV, Von Pinho RG, do NascimentoADJret al. (2012). Detection limits of the strip test and PCR for genetically modified corn in Brazil. Genet. Mol. Res. 11: 2497-2505. http://dx.doi.org/10.4238/2012.June.27.2 Palaudelmàs M, Melé E, Monfort A, Serra J, et al (2012). Assessment of the influence of field size on maize gene flow using SSR analysis. Transgenic Res. 21: 471-483. http://dx.doi.org/10.1007/s11248-011-9549-z Reiting R, Broll H, Waiblinger HU, Grohmann L, et al (2007). Collaborative study of a T-nos real-time PCR method for screening of genetically modified organisms in food products. J. Verbr. Lebensm 2: 116-121. http://dx.doi.org/10.1007/s00003-007-0189-4 Romeis J, Meissle M, Bigler F, et al (2006). Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 24: 63-71. http://dx.doi.org/10.1038/nbt1180 Ronald P, et al (2011). Plant genetics, sustainable agriculture and global food security. Genetics 188: 11-20. http://dx.doi.org/10.1534/genetics.111.128553 Santos N (2015). Cultura do Milho. Sistema de Produção de Milho Orgânico: 2013. Available at [http://www.zeamays.com.br/sistema-de-producao-de-milho-organico/]. Accessed November 6, 2015. Silva PSL, Silva KMB, Silva PIB, Oliveira VR, et al (2010). Rendimento de Espigas Verdes e Grãos de Cultivares de Milho em Competição com Plantas Daninhas. Planta Daninha 28: 77-85. http://dx.doi.org/10.1590/S0100-83582010000100010 Tabashnik BE, et al (2010). Plant science. Communal benefits of transgenic corn. Science 330: 189-190. http://dx.doi.org/10.1126/science.1196864 Waiblinger HU, Ernest B, Anderson A, Pietsch K, et al (2008). Validation and collaborative study of a P-35S and T-nos duplex real-time PCR screening method to detect genetically modified organisms in food products. Eur. Food Res. Technol. 226: 1221-1228. http://dx.doi.org/10.1007/s00217-007-0748-z Wolf C, Scherzinger M, Wurz A, Pauli U, et al (2000). Detection of cauliflower mosaic virus by the polymerase chain reaction: testing of food components for false-positive 35Spromoterscreening results. Eur. Food Res. Technol. 210: 367-372. http://dx.doi.org/10.1007/s002170050565  
Y. Liu, Zhang, Y. F., Sun, X. L., Liu, S. Y., Liu, Y., Zhang, Y. F., Sun, X. L., and Liu, S. Y., Detection of Jaagsiekte sheep retrovirus in the peripheral blood during the pre-clinical period of ovine pulmonary adenomatosis, vol. 15, p. -, 2016.
Y. J. Liu, Zhang, J. Y., Li, A. M., Liu, Z. W., Zhang, Y. Y., Sun, X. H., Liu, Y. J., Zhang, J. Y., Li, A. M., Liu, Z. W., Zhang, Y. Y., and Sun, X. H., Detection of Piwi-interacting RNAs based on sequence features, vol. 15, p. -, 2016.
E. Abdelhaliem, Al-Huqail, A. A., Abdelhaliem, E., and Al-Huqail, A. A., Detection of protein and DNA damage induced by elevated carbon dioxide and ozone in Triticum aestivum L. using biomarker and comet assay, vol. 15, p. -, 2016.
Y. L. Qian, Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., Zuo, X. L., Qian, Y. L., Zhang, X. Q., Wang, L. F., Chen, J., Chen, B. R., Lv, G. H., Wu, Z. C., Guo, J., Wang, J., Qi, Y. C., Li, T. C., Zhang, W., Ruan, L., and Zuo, X. L., Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.), vol. 15, p. -, 2016.
Z. Yang, Li, X., Zhang, N., Zhang, Y. N., Jiang, H. W., Gao, J., Kuai, B. K., Ding, Y. L., Huang, X. Q., Yang, Z., Li, X., Zhang, N., Zhang, Y. N., Jiang, H. W., Gao, J., Kuai, B. K., Ding, Y. L., and Huang, X. Q., Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross, vol. 15, p. -, 2016.
L. A. Peixoto, Bhering, L. L., and Cruz, C. D., Determination of the optimal number of markers and individuals in a training population necessary for maximum prediction accuracy in F2 populations by using genomic selection models, vol. 15, no. 4, p. -, 2016.
ACKNOWLEDGMENTSWe are thankful to CAPES (Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPEMIG (Fundação de Amparo à Pesquisa de Minas Gerais), and Universidade Federal de Viçosa for financial support. We also thank the Biometric Lab (Universidade Federal de Viçosa, Brazil) where all analyses were performed by remote access.REFERENCESAllard RW (1999). Principles of plant breeding. John Wiley & Sons, New York. Ashraf M, Akram NA, Mehboob-Ur-RahmanFoolad MR, et al (2012). Marker-assisted selection in plant breeding for salinity tolerance. Methods Mol. Biol. 913: 305-333. Asoro FG, Newell MA, Beavis WD, Scott MP, et al (2011). Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4: 132-144. http://dx.doi.org/10.3835/plantgenome2011.02.0007 Bassi FM, Bentley AR, Charmet G, Ortiz R, et al (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 242: 23-36. http://dx.doi.org/10.1016/j.plantsci.2015.08.021 Belaj A, del Carmen Dominguez-García M, Atienza SG, Urdíroz NM, et al (2012). Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 8: 365-378. http://dx.doi.org/10.1007/s11295-011-0447-6 Beyene Y, Semagn K, Mugo S, Tarekegne A, et al (2015). Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci. 55: 154-163. http://dx.doi.org/10.2135/cropsci2014.07.0460 Bhering LL, Junqueira VS, Peixoto LA, Cruz CD, et al (2015). Comparison of methods used to identify superior individuals in genomic selection in plant breeding. Genet. Mol. Res. 14: 10888-10896. http://dx.doi.org/10.4238/2015.September.9.26 Boichard D, Chung H, Dassonneville R, David X, Bovine LD Consortiumet al (2012). Design of a bovine low-density SNP array optimized for imputation. PLoS One 7: e34130. http://dx.doi.org/10.1371/journal.pone.0034130 Borém A and Miranda GV (2013). Melhoramento de Plantas. UFV, Viçosa. Cros D, Denis M, Sánchez L, Cochard B, et al (2015). Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor. Appl. Genet. 128: 397-410. http://dx.doi.org/10.1007/s00122-014-2439-z Cruz CD, et al (2013). GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 35: 271-276. http://dx.doi.org/10.4025/actasciagron.v35i3.21251 de Los Campos G, Vazquez AI, Fernando R, Klimentidis YC, et al (2013). Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 9: e1003608. http://dx.doi.org/10.1371/journal.pgen.1003608 Desta ZA, Ortiz R, et al (2014). Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19: 592-601. http://dx.doi.org/10.1016/j.tplants.2014.05.006 Dirlewanger E, Pronier V, Parvery C, Rothan C, et al (1998). Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor. Appl. Genet. 97: 888-895. http://dx.doi.org/10.1007/s001220050969 Erbe M, Gredler B, Seefried FR, Bapst B, et al (2013). A function accounting for training set size and marker density to model the average accuracy of genomic prediction. PLoS One 8: e81046. http://dx.doi.org/10.1371/journal.pone.0081046 Falconer D and Mackay T (1996). Introduction to Quantitative Genetics. Longman Scientific & Technical, Harlow, UK. Frascaroli E, Schrag TA, Melchinger AE, et al (2013). Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor. Appl. Genet. 126: 133-141. http://dx.doi.org/10.1007/s00122-012-1968-6 Gianola D, de los Campos G, Hill WG, Manfredi E, et al (2009). Additive genetic variability and the Bayesian alphabet. Genetics 183: 347-363. http://dx.doi.org/10.1534/genetics.109.103952 Gouy M, Rousselle Y, Bastianelli D, Lecomte P, et al (2013). Experimental assessment of the accuracy of genomic selection in sugarcane. Theor. Appl. Genet. 126: 2575-2586. http://dx.doi.org/10.1007/s00122-013-2156-z Habier D, Fernando RL, Dekkers JC, et al (2009). Genomic selection using low-density marker panels. Genetics 182: 343-353. http://dx.doi.org/10.1534/genetics.108.100289 He J, Zhao X, Laroche A, Lu Z-X, et al (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5: 484. http://dx.doi.org/10.3389/fpls.2014.00484 Heaton MP, Harhay GP, Bennett GL, Stone RT, et al (2002). Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm. Genome 13: 272-281. http://dx.doi.org/10.1007/s00335-001-2146-3 Isidro J, Jannink J-L, Akdemir D, Poland J, et al (2015). Training set optimization under population structure in genomic selection. Theor. Appl. Genet. 128: 145-158. http://dx.doi.org/10.1007/s00122-014-2418-4 Langer M, Maixner M, et al (2004). Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. VITIS-Journal of Grapevine Research 43: 191-199. Lightfoot DA, et al (2015). Two Decades of Molecular Marker-Assisted Breeding for Resistance to Soybean Sudden Death Syndrome. Crop Sci. 55: 1460-1484. http://dx.doi.org/10.2135/cropsci2014.10.0721 Lynch M, Milligan BG, et al (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99. http://dx.doi.org/10.1111/j.1365-294X.1994.tb00109.x Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Ogutu JO, Schulz-Streeck T, Piepho H-P, et al (2012). Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc. 6 (Suppl 2): S10. http://dx.doi.org/10.1186/1753-6561-6-S2-S10 Ordas B, Butron A, Alvarez A, Revilla P, et al (2012). Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theor. Appl. Genet. 124: 1183-1191. http://dx.doi.org/10.1007/s00122-011-1778-2 Pandey MK, Rani NS, Sundaram RM, Laha GS, et al (2013). Improvement of two traditional Basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Mol. Breed. 31: 239-246. http://dx.doi.org/10.1007/s11032-012-9779-7 Poland J, Endelman J, Dawson J, Rutkoski J, et al (2012). Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5: 103-113. http://dx.doi.org/10.3835/plantgenome2012.06.0006 R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Ren R, Ray R, Li P, Xu J, et al (2015). Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Mol. Genet. Genomics 290: 1457-1470. http://dx.doi.org/10.1007/s00438-015-0997-7 Soldati MC, Fornes L, Van Zonneveld M, Thomas E, et al (2013). An assessment of the genetic diversity of Cedrela balansae C. DC. (Meliaceae) in Northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochem. Syst. Ecol. 47: 45-55. http://dx.doi.org/10.1016/j.bse.2012.10.011 Spindel J, Begum H, Akdemir D, Virk P, et al (2015). Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 11: e1004982. http://dx.doi.org/10.1371/journal.pgen.1004982 Tang B, Jenkins JN, McCarty J, Watson C, et al (1993). F2 hybrids of host plant germplasm and cotton cultivars: II. Heterosis and combining ability for fiber properties. Crop Sci. 33: 706-710. http://dx.doi.org/10.2135/cropsci1993.0011183X003300040013x Tang B, Jenkins J, Watson C, McCarty J, et al (1996). Evaluation of genetic variances, heritabilities, and correlations for yield and fiber traits among cotton F2 hybrid populations. Euphytica 91: 315-322. http://dx.doi.org/10.1007/BF00033093 Wellmann R, Preuß S, Tholen E, Heinkel J, et al (2013). Genomic selection using low density marker panels with application to a sire line in pigs. Genet. Sel. Evol. 45: 28. http://dx.doi.org/10.1186/1297-9686-45-28 Würschum T, Reif JC, Kraft T, Janssen G, et al (2013). Genomic selection in sugar beet breeding populations. BMC Genet. 14: 85. http://dx.doi.org/10.1186/1471-2156-14-85 Yaniv E, Raats D, Ronin Y, Korol AB, et al (2015). Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol. Breed. 35: 1-12. http://dx.doi.org/10.1007/s11032-015-0238-0 Zhang J, Song Q, Cregan PB, Jiang G-L, et al (2016). Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor. Appl. Genet. 129: 117-130. http://dx.doi.org/10.1007/s00122-015-2614-x  
H. Liu, Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., Liao, K., Liu, H., Long, Z. C., Li, L. N., Wang, Q. F., Chen, J. M., and Liao, K., Development and characterization of microsatellite loci in Brasenia schreberi (Cabombaceae) based on the next-generation sequencing, vol. 15, p. -, 2016.
W. H. Shen, Li, Z. H., Peng, Y. H., Yang, M. H., Tan, Z. Q., Zheng, W., Shen, W. H., Li, Z. H., Peng, Y. H., Yang, M. H., Tan, Z. Q., and Zheng, W., Development and characterization of microsatellite loci in Excentrodendron hsienmu (Chun & How) H.T. Chang& R.H. Miau, vol. 15, p. -, 2016.
Q. F. Geng, He, J., Yang, J., Shi, E., Wang, D. B., Xu, W. X., Jeelani, N., Wang, Z. S., Liu, H., Geng, Q. F., He, J., Yang, J., Shi, E., Wang, D. B., Xu, W. X., Jeelani, N., Wang, Z. S., and Liu, H., Development and characterization of microsatellite markers for Ulmus chenmoui (Ulmaceae), an endangered tree endemic to eastern China, vol. 15, p. -, 2016.
L. Liu, Gao, T. X., Han, Z. Q., Li, C. H., Sun, D. R., Song, N., Liu, L., Gao, T. X., Han, Z. Q., Li, C. H., Sun, D. R., and Song, N., Development and characterization of microsatellite markers of the eastern keelback mullet (Liza affinis), vol. 15, p. -, 2016.
T. Mornkham, Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., and Kurzweil, H., Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (Helianthus tuberosus L.), vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGEMENTS The Higher Education Research Promotion, the National Research University Project of Thailand, the Office of the Higher Education Commission through the Food and Functional Food Research Cluster of Khon Kaen University (F-2553-Ph.d-02 and FC1.1.5 PhD), and research funding from Khon Kaen University to the corresponding author are acknowledged for financially support. We thank Assistant Professor Dr. Tawan Remsungnen for his assistance on the preliminary analysis of SSRs, and the journal reviewers for their valuable comments on this manuscript. REFERENCES Adawy SS, Mokhtar MM, Alsamman MA and Sakr MM (2015). Development of EST-SSR annotated database in olive (Oleaeuropaea). IJSR09. Alla NA, Domokos-Szabolcsy É, El-Ramady H, Hodossi S, et al (2014). Jerusalem artichoke (Helianthus tuberosus L.): A review of in vivo and in vitro propagation. Int. J. Hortic. Sci. 20: 131-136. Andersen JR, Lübberstedt T, et al (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560. http://dx.doi.org/10.1016/j.tplants.2003.09.010 Bassam BJ, Caetano-Anollés G, Gresshoff PM, et al (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I Bock DG, Kane NC, Ebert DP, Rieseberg LH, et al (2014). Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201: 1021-1030. http://dx.doi.org/10.1111/nph.12560 Botstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Chen H, Liu L, Wang L, Wang S, et al (2015). Development and validation of EST-SSR markers from the transcriptome of Adzuki bean (Vigna angularis). PLoS One 10: e0131939. http://dx.doi.org/10.1371/journal.pone.0131939 Debnath SC, et al (2014). Structured diversity using EST-PCR and EST-SSR markers in a set of wild blueberry clones and cultivars. Biochem. Syst. Ecol. 54: 337-347. http://dx.doi.org/10.1016/j.bse.2014.03.018 Excoffier L, Smouse PE, Quattro JM, et al (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. Gadaleta A, Giancaspro A, Zacheo S, Nigro D, et al (2011). Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet. Resour. 9: 243-246. http://dx.doi.org/10.1017/S147926211100030X Garcia RAV, Rangel PN, Brondani C, Martins WS, et al (2011). The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet. 12: 41-54. http://dx.doi.org/10.1186/1471-2156-12-41 Gupta SK, Gopalakrishna T, et al (2010). Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53: 508-523. http://dx.doi.org/10.1139/G10-028 Hartl DL and Clark AG (1997). Principle of Population Genetics. 1997. Sinauer Associates, Inc. Hildebrand CE, Torney DC, Wagner RP, et al (1992). Informativeness of polymorphic DNA markers. Los Alamos Sci. 20: 100-102. Huang X, Madan A, et al (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 Johansson E, Prade T, Angelidaki I, Svensson SE, et al (2015). Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016. http://dx.doi.org/10.3390/ijms16048997 Ju MM, Ma HC, Xin PY, Zhou ZL, et al (2015). Development and characterization of EST-SSR markers in Bombax ceiba (Malvaceae). Appl. Plant Sci. 3: 1500001. http://dx.doi.org/10.3732/apps.1500001 Jung WY, Lee SS, Kim CW, Kim H-S, et al (2014). RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne). PLoS One 9: e111982. http://dx.doi.org/10.1371/journal.pone.0111982 Kays SJ and Nottingham SF (2008). Genetic resources, breeding and cultivars. In: Biology and Biochemistry of Jerusalem Artichoke (Taylor and Francis eds.). CRC Press, 149-240. Kiru S, Nasenko I, et al (2010). Use of genetic resources from Jerusalem artichoke collection of N. Vavilov Institute in breeding for bioenergy and health. Agron. Res. 8: 625-632. Kou YX, Zeng J, Liu JQ, Kou YX, et al (2014). Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits. J. Agric. Sci. 152: 779-789. http://dx.doi.org/10.1017/S0021859613000476 Kumari M, Grover A, Yadav PV, Arif M, et al (2013). Development of EST-SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes Genomics 35: 661-670. http://dx.doi.org/10.1007/s13258-013-0118-0 Malfa SL, Currò S, Douglas AB, Brugaletta M, et al (2014). Genetic diversity revealed by EST-SSR markers in carob tree (Ceratonia siliqua L.). Biochem. Syst. Ecol. 55: 205-211. http://dx.doi.org/10.1016/j.bse.2014.03.022 Merritt BJ, Culley TM, Avanesyan A, Stokes R, et al (2015). An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl. Plant Sci. 3: 1500025. http://dx.doi.org/10.3732/apps.1500025 Mondini L, Noorani A, Pagnotta MA, et al (2009). Assessing plant genetic diversity by molecular tools. Diversity (Basel) 1: 19-35. http://dx.doi.org/10.3390/d1010019 Moose SP, Mumm RH, et al (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147: 969-977. http://dx.doi.org/10.1104/pp.108.118232 Mujaju C, Sehic J, Nybom H, et al (2013). Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am. J. Plant Sci. 4: 1448-1456. http://dx.doi.org/10.4236/ajps.2013.47177 Mullis K, Faloona F, Scharf S, Saiki R, et al (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51: 263-273. http://dx.doi.org/10.1101/SQB.1986.051.01.032 Park YJ, Lee JK, Kim NS, et al (2009). Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14: 4546-4569. http://dx.doi.org/10.3390/molecules14114546 Peakall R, Smouse P, et al (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x Peakall R, Smouse PE, et al (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28: 2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460 Poczai P, Varga I, Laos M, Cseh A, et al (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods 9: 6. http://dx.doi.org/10.1186/1746-4811-9-6 Ramu P, Billot C, Rami JF, Senthilvel S, et al (2013). Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor. Appl. Genet. 126: 2051-2064. http://dx.doi.org/10.1007/s00122-013-2117-6 Şelale H, Çelik I, Gültekin V, Allmer J, et al (2013). Development of EST-SSR markers for diversity and breeding studies in opium poppy. Plant Breed. 132: 344-351. http://dx.doi.org/10.1111/pbr.12059 Sokal RR, Michener CD, et al (1958). A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38: 1409-1438. Temnykh S, DeClerck G, Lukashova A, Lipovich L, et al (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452. http://dx.doi.org/10.1101/gr.184001 Wangsomnuk PP, Khampa S, Jogloy S, Srivong T, et al (2011a). Assessing genetic structure and relatedness of Jerusalem Artichoke (Helianthus tuberosus L.) germplasm with RAPD, ISSR and SRAP Markers. AJPS 2: 753-764. http://dx.doi.org/10.4236/ajps.2011.26090 Wangsomnuk PP, Khampa S, Wangsomnuk P, Jogloy S, et al (2011b). Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genet. Mol. Res. 10: 4012-4025. http://dx.doi.org/10.4238/2011.December.12.4 Wangsomnuk PP, Khampa S, Jogloy S, et al (2015). Exogenous supplementation of growth regulators and temperature improves germination of dormant Jerusalem Artichoke (Helianthus tuberosus L.) seeds under in vitro and in vivo conditions. JABS 9: 23-30. Zhang M, Mao W, Zhang G, Wu F, et al (2014). Development and characterization of polymorphic EST-SSR and genomic SSR markers for Tibetan annual wild barley. PLoS One 9: e94881. http://dx.doi.org/10.1371/journal.pone.0094881 Zhou Q, Chen TL, Wang YR, Liu ZP, et al (2014). The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochem. Syst. Ecol. 57: 227-230. http://dx.doi.org/10.1016/j.bse.2014.08.023
Q. Zhou, Wang, X. X., Xu, M., Cao, F. L., Yu, F. X., Xu, L. A., Zhou, Q., Wang, X. X., Xu, M., Cao, F. L., Yu, F. X., Xu, L. A., Zhou, Q., Wang, X. X., Xu, M., Cao, F. L., Yu, F. X., and Xu, L. A., Development and characterization of novel microsatellite markers for Ginkgo biloba using 454 pyrosequencing, vol. 15, p. -, 2016.
Y. T. Li, Wang, C. L., Zheng, X. X., Wang, H. L., Zhao, Y. K., Gai, W. W., Jin, H. L., Gao, Y. W., Li, N., Yang, S. T., Xia, X. Z., Li, Y. T., Wang, C. L., Zheng, X. X., Wang, H. L., Zhao, Y. K., Gai, W. W., Jin, H. L., Gao, Y. W., Li, N., Yang, S. T., Xia, X. Z., Li, Y. T., Wang, C. L., Zheng, X. X., Wang, H. L., Zhao, Y. K., Gai, W. W., Jin, H. L., Gao, Y. W., Li, N., Yang, S. T., and Xia, X. Z., Development and characterization of Rift Valley fever virus-like particles, vol. 15, p. -, 2016.
J. L. Cheng, Yin, Z. C., Mei, Z. Q., Wei, C. L., Chen, H. C., Wu, X. S., Fu, J. J., Cheng, J. L., Yin, Z. C., Mei, Z. Q., Wei, C. L., Chen, H. C., Wu, X. S., and Fu, J. J., Development and significance of SCAR marker QG12-5 for Canarium album (Lour.) Raeusch by molecular cloning from improved RAPD amplification, vol. 15, p. -, 2016.
H. Zhou, Cai, B. H., Lu, Z. Q., Gao, Z. H., Qiao, Y. S., Zhou, H., Cai, B. H., Lu, Z. Q., Gao, Z. H., and Qiao, Y. S., Development, characterization, and annotation of potential simple sequence repeats by transcriptome sequencing in pears (Pyrus pyrifolia Nakai), vol. 15, p. -, 2016.
P. R. O. Silva, de Jesus, O. N., Bragança, C. A. D., Haddad, F., Amorim, E. P., Ferreira, C. F., Silva, P. R. O., de Jesus, O. N., Bragança, C. A. D., Haddad, F., Amorim, E. P., and Ferreira, C. F., Development of a thematic collection of Musa spp accessions using SCAR markers for preventive breeding against Fusarium oxysporum f. sp cubense tropical race 4, vol. 15, p. -, 2016.
S. B. Im, Kwon, S. - J., Ryu, J., Jeong, S. W., Kim, J. B., Ahn, J. - W., Kim, S. H., Jo, Y. D., Choi, H. - I., Kang, S. - Y., Im, S. B., Kwon, S. - J., Ryu, J., Jeong, S. W., Kim, J. B., Ahn, J. - W., Kim, S. H., Jo, Y. D., Choi, H. - I., and Kang, S. - Y., Development of a transposon-based marker system for mutation breeding in sorghum (Sorghum bicolor L.), vol. 15, p. -, 2016.
M. Elangbam, Misra, A. K., Elangbam, M., and Misra, A. K., Development of CAPS markers to identify Indian tea (Camellia sinensis) clones with high catechin content, vol. 15, p. -, 2016.
S. G. Fan, Wei, J. F., Guo, Y. H., Huang, G. J., Yu, D. H., Fan, S. G., Wei, J. F., Guo, Y. H., Huang, G. J., Yu, D. H., Fan, S. G., Wei, J. F., Guo, Y. H., Huang, G. J., and Yu, D. H., Development of coding single nucleotide polymorphic markers in the pearl oyster Pinctada fucata based on next-generation sequencing and high-resolution melting analysis, vol. 15, no. 4, p. -, 2016.
The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the PhD Start-Up Fund of Natural Science Foundation of Guangdong Province (#2014A030310237), the Natural Science Foundation Program of Hainan Province (#20154180), the Basic Scientific Research Fund for the Central Institutes of Public Welfare (South China Sea Fisheries Research Institute, #2014TS08), the Special Fund for Marine Fisheries Research and Extension of Guangdong Province (#A201401A07, #Z2015010), the National Natural Science Foundation of China (#31372525), and the Earmarked Fund for China Agriculture Research System (#CARS-48). REFERENCES An XP, Song YX, Hou JX, Han P, et al (2015). Mutations in the MTHFR gene and their associations with milk production traits in dairy goats. Small Rumin. Res. 130: 76-80. http://dx.doi.org/10.1016/j.smallrumres.2015.06.008 Bayır M, Bayır A, Wright JM, et al (2015). Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part D Genomics Proteomics 14: 26-32. http://dx.doi.org/10.1016/j.cbd.2015.02.002 Bergstrom DE, Young M, Albrecht KH, Eicher EM, et al (2000). Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis 28: 111-124. http://dx.doi.org/10.1002/1526-968X(200011/12)28:3/4<111::AID-GENE40>3.0.CO;2-5 Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, et al (1999). Identification of a family of human F-box proteins. Curr. Biol. 9: 1177-1179. http://dx.doi.org/10.1016/S0960-9822(00)80020-2 Cui G, Zhang L, Xu Y, Cianflone K, et al (2013). Development of a high resolution melting method for genotyping of risk HLA-DQA1 and PLA2R1 alleles and ethnic distribution of these risk alleles. Gene 514: 125-130. http://dx.doi.org/10.1016/j.gene.2012.11.004 Gao L, Chen M, Chang Y, Ji N, et al (2013). Development of SNP markers associated with defense mechanism of sea cucumber, Apostichopus japonicas. Conserv. Genet. Resour. 5: 587-591. http://dx.doi.org/10.1007/s12686-013-9858-z Gao Q, Ju Z, Zhang Y, Huang J, et al (2014). Association of TNP2 gene polymorphisms of the bta-miR-154 target site with the semen quality traits of Chinese Holstein bulls. PLoS One 9: e84355. http://dx.doi.org/10.1371/journal.pone.0084355 Gomez-Uchida D, Seeb L, Warheit K, McKinney G, et al (2014). Deep sequencing of the transcriptome and mining of single nucleotide polymorphisms (SNPs) provide genomic resources for applied studies in Chinook salmon (Oncorhynchus tshawytscha). Conserv. Genet. Resour. 6: 807-811. http://dx.doi.org/10.1007/s12686-014-0235-3 Grabherr MG, Haas BJ, Yassour M, Levin JZ, et al (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29: 644-652. http://dx.doi.org/10.1038/nbt.1883 Guo L, Li L, Zhang S, Guo X, et al (2011). Novel polymorphisms in the myostatin gene and their association with growth traits in a variety of bay scallop, Argopecten irradians. Anim. Genet. 42: 339-340. http://dx.doi.org/10.1111/j.1365-2052.2011.02172.x Huang X, Wu S, Guan Y, Li Y, et al (2014a). Identification of sixteen single-nucleotide polymorphism markers in the pearl oyster, Pinctada fucata, for population genetic structure analysis. J. Genet. 93: e1-e4. Huang J, Zhang Y, Li J, Yu Z, et al (2014b). Development of SNP markers in Crassostrea hongkongensis based on the next-generation sequencing and high resolution melting analysis. Conserv. Genet. Resour. 6: 559-562. http://dx.doi.org/10.1007/s12686-014-0218-4 Jones DB, Jerry DR, Forêt S, Konovalov DA, et al (2013). Genome-wide SNP validation and mantle tissue transcriptome analysis in the silver-lipped pearl oyster, Pinctada maxima. Mar. Biotechnol. (NY) 15: 647-658. http://dx.doi.org/10.1007/s10126-013-9514-3 Kipreos ET, Pagano M, et al (2000). The F-box protein family. Genome Biol. 1: S3002. http://dx.doi.org/10.1186/gb-2000-1-5-reviews3002 Klinbunga S, Sittikankaew K, Jantee N, Prakopphet S, et al (2015). Expression levels of vitellogenin receptor (Vtgr) during ovarian development and association between its single nucleotide polymorphisms (SNPs) and reproduction-related parameters of the giant tiger shrimp Penaeus monodon. Aquaculture 435: 18-27. http://dx.doi.org/10.1016/j.aquaculture.2014.09.013 Li Y, Liu W, Lin J, He M, et al (2016). Development of SNP markers in Pinctada fucata and its application for family genetic analysis. Mar. Sci. Bull. 35: 96-102. Liu L, Yu X, Tong J, et al (2012). Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Mol. Biol. Rep. 39: 9211-9221. http://dx.doi.org/10.1007/s11033-012-1794-6 Lu L, Zhou ZM, Huang XY, Xu M, et al (2005). Identification and characterization of cul-3b, a novel hominine CUL-3 transcript variant. Asian J. Androl. 7: 205-211. http://dx.doi.org/10.1111/j.1745-7262.2005.00024.x Malodobra-Mazur M, Bednarska-Chabowska D, Olewinski R, Chmielecki Z, et al (2016). Single nucleotide polymorphisms in 5′-UTR of the SLC2A4 gene regulate solute carrier family 2 member 4 gene expression in visceral adipose tissue. Gene 576: 499-504. http://dx.doi.org/10.1016/j.gene.2015.10.067 Mymrikov EV, Seit-Nebi AS, Gusev NB, et al (2011). Large potentials of small heat shock proteins. Physiol. Rev. 91: 1123-1159. http://dx.doi.org/10.1152/physrev.00023.2010 Nagy S, Poczai P, Cernák I, Gorji AM, et al (2012). PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem. Genet. 50: 670-672. http://dx.doi.org/10.1007/s10528-012-9509-1 Qiu Y, Lu H, Zhu JT, Chen XF, et al (2014). Characterization of novel EST-SSR markers and their correlations with growth and nacreous secretion traits in the pearl oyster Pinctada martensii (Dunker). Aquaculture 420: S92-S97. http://dx.doi.org/10.1016/j.aquaculture.2013.09.040 Ranjan S, Bhushan B, Panigrahi M, Kumar A, et al (2015). Association and expression analysis of single nucleotide polymorphisms of partial tumor necrosis factor alpha gene with mastitis in crossbred cattle. Anim. Biotechnol. 26: 98-104. http://dx.doi.org/10.1080/10495398.2014.929582 Seipp MT, Durtschi JD, Liew MA, Williams J, et al (2007). Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting. J. Mol. Diagn. 9: 284-289. http://dx.doi.org/10.2353/jmoldx.2007.060136 Shi Y, Wang S, Gu Z, Lv J, et al (2014). High-density single nucleotide polymorphisms linkage and quantitative trait locus mapping of the pearl oyster, Pinctada fucata martensii Dunker. Aquaculture 434: 376-384. http://dx.doi.org/10.1016/j.aquaculture.2014.08.044 Smith BL, Lu CP, Alvarado Bremer JR, et al (2010). High-resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. Mol. Ecol. Resour. 10: 193-196. http://dx.doi.org/10.1111/j.1755-0998.2009.02726.x Sun Y, Yu X, Tong J, et al (2012). Polymorphisms in Myostatin Gene and associations with growth traits in the common carp (Cyprinus carpio L.). Int. J. Mol. Sci. 13: 14956-14961. http://dx.doi.org/10.3390/ijms131114956 Wada KT, Komaru A, et al (1996). Color and weight of pearls produced by grafting the mantle tissue from a selected population for white shell color of the Japanese pearl oyster Pinctada fucata martensii (Dunker). Aquaculture 142: 25-32. http://dx.doi.org/10.1016/0044-8486(95)01242-7 Wang J, Qi H, Li L, Zhang G, et al (2013). Two-step high-resolution melting method for SNP validation in the highly polymorphic Crassostrea gigas genome. Southwest Chin. J. Agr. Sci 26: 1699-1704. Wang J, Qi H, Li L, Que H, et al (2015). Discovery and validation of genic single nucleotide polymorphisms in the Pacific oyster Crassostrea gigas. Mol. Ecol. Resour. 15: 123-135. http://dx.doi.org/10.1111/1755-0998.12278 Wang X, Meng X, Song B, Qiu X, et al (2010). SNPs in the myostatin gene of the mollusk Chlamys farreri: association with growth traits. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 155: 327-330. http://dx.doi.org/10.1016/j.cbpb.2009.12.001 Xu Z, Tang L, Li Y, Ge J, et al (2016). Identification of SNPs in the 5′-flanking region and 3′-UTR of the MIH gene and their association with precocity of the Chinese mitten crab Eriocheir sinensis. Aquacult. Res. 47: 992-1000. http://dx.doi.org/10.1111/are.12559 Yeh FC, Yang R, Boyle TJ, Ye Z, et al. (2000). POPGENE 32, Microsoft windows based freeware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada. Yu DH, Chu KH, et al (2006). Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata from southern China. Aquaculture 258: 220-227. http://dx.doi.org/10.1016/j.aquaculture.2006.03.024 Zhang N, Ma Z, Zhang D, Guo H, et al (2015). Characterization of 25 single nucleotide polymorphism markers in the pearl oyster Pinctada martensii (Dunker). Conserv. Genet. Resour. 7: 831-835. http://dx.doi.org/10.1007/s12686-015-0503-x
Z. C. Long, Gichira, A. W., Chen, J. M., Wang, Q. F., Liao, K., and A, Development of EST-SSR markers in the relict tree Davidia involucrata (Davidiaceae) using transcriptome sequencing, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interestACKNOWLEDGMENTSWe thank Zhi-Yuan Du, Le-Na Li, and Hua Liu for their help in the laboratory. Research supported by grants from the National Natural Science Foundation of China (#31200170 and #31570220). REFERENCESChen JM, Zhao SY, Liao YY, Gichira AW, et al (2015). Chloroplast DNA phylogeographic analysis reveals significant spatial genetic structure of the relictual tree Davidia involucrata (Davidiaceae). Conserv. Genet. 16: 583-593. http://dx.doi.org/10.1007/s10592-014-0683-z Chen Z, Xue C, Zhu S, Zho F, et al (2005). GoPipe: streamlined gene ontology annotation for batch anonymous sequences with statistics. Prog. Biochem. Biophys. 32: 187-191. Du YJ, Dai QY, Zhang LY, Qiu YX, et al (2012). Development of microsatellite markers for the dove tree, Davidia involucrata (Nyssaceae), a rare endemic from China. Am. J. Bot. 99: e206-e209. http://dx.doi.org/10.3732/ajb.1100507 Fu LK and Jin JM (1992). China plant red data book - rare and endangered plants. Vol. 1. Science Press, Beijing. Grabherr MG, Haas BJ, Yassour M, Levin JZ, et al (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29: 644-652. http://dx.doi.org/10.1038/nbt.1883 Kanehisa M, Goto S, Furumichi M, Tanabe M, et al (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38: D355-D360. http://dx.doi.org/10.1093/nar/gkp896 Li XP, Li ZL, He CL, Zhu WY, et al (2012a). Genetic diversity of the endangered Davidia involucrata by AFLP analysis. Acta Hort. Sin. 39: 992-998. Li Z, Wang C, Liu Y, Li J, et al (2012b). Microsatellite primers in the Chinese dove tree, Davidia involucrata (Cornaceae), a relic species of the Tertiary. Am. J. Bot. 99: e78-e80. http://dx.doi.org/10.3732/ajb.1100365 Luo S, He Y, Ning G, Zhang J, et al (2011). Genetic diversity and genetic structure of different populations of the endangered species Davidia involucrata in China detected by inter-simple sequence repeat analysis. Trees 25: 1063-1071. http://dx.doi.org/10.1007/s00468-011-0581-7 Ma Q, Du YJ, Chen N, Zhang LY, et al (2015). Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. Syst. Bot. 40: 796-810. http://dx.doi.org/10.1600/036364415X689267 Manchester SR, et al (2002). Leaves and fruits of Davidia (Cornales) from the Paleocene of North America. Syst. Bot. 27: 368-382. Ng P, Wei CL, Sung WK, Chiu KP, et al (2005). Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods 2: 105-111. http://dx.doi.org/10.1038/nmeth733 Peakall R, Smouse PE, et al (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28: 2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460 Peng YL, Hu YQ, Sun H, et al (2003). Allozyme analysis of Davidia involucrata var. vilmoriniana and its biogeography significance Acta Bot. Yunnanica 25: 55-62. Rice P, Longden I, Bleasby A, et al (2000). EMBOSS: the European molecular biology open software suite. Trends Genet. 16: 276-277. http://dx.doi.org/10.1016/S0168-9525(00)02024-2 Rozen S, Skaletsky H, et al (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386. Song CW, Bao MZ, et al (2004). Study on genetic diversity of RAPD mark for natural Davidia involucrata population. Sci. Silvae Sin. 40: 75-79. Tang CQ, Ohsawa M, et al (2002). Tertiary relic deciduous forests on a humid subtropical mountain, Mt. Emei, Sichuan, China. Folia Geobot. 37: 93-106. http://dx.doi.org/10.1007/BF02803193 Tao C, Yang Z, Lu R, Liu T, et al (2012). Microsatellite markers for the relictual dove tree, Davidia involucrata (Cornaceae). Am. J. Bot. 99: e108-e110. http://dx.doi.org/10.3732/ajb.1100414 Wu J, Cai C, Cheng F, Cui H, et al (2014). Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Mol. Breed. 34: 1853-1866. http://dx.doi.org/10.1007/s11032-014-0144-x You H, Fujiwara K, Liu Y, et al (2014). A preliminary vegetation-ecological study of Davidia involucrata forest. Nat. Sci. 6: 1012-1029. Zhang J, Ma W, Song X, Lin Q, et al (2014). Characterization and development of EST-SSR markers derived from transcriptome of yellow catfish. Molecules 19: 16402-16415. http://dx.doi.org/10.3390/molecules191016402  
A. W. Gichira, Long, Z. C., Wang, Q. F., Chen, J. M., Liao, K., Gichira, A. W., Long, Z. C., Wang, Q. F., Chen, J. M., and Liao, K., Development of expressed sequence tag-based microsatellite markers for the critically endangered Isoëtes sinensis (Isoetaceae) based on transcriptome analysis, vol. 15, p. -, 2016.
Q. Z. Wang, Huang, M., Downie, S. R., Chen, Z. X., Wang, Q. Z., Huang, M., Downie, S. R., and Chen, Z. X., Development of expressed sequence tag-simple sequence repeat markers for genetic characterization and population structure analysis of Praxelis clematidea (Asteraceae), vol. 15, p. -, 2016.
T. Li, Zhao, J., Li, W., Shi, Y., Hong, X. Y., Zhu, X. P., Li, T., Zhao, J., Li, W., Shi, Y., Hong, X. Y., and Zhu, X. P., Development of microsatellite markers and genetic diversity analysis for Pelodiscus sinensis, vol. 15. p. -, 2016.
A. W. Gichira, Long, Z. C., Hu, G. W., Gituru, R. W., Wang, Q. F., Chen, J. M., Gichira, A. W., Long, Z. C., Hu, G. W., Gituru, R. W., Wang, Q. F., and Chen, J. M., Development of microsatellite markers in Hagenia abyssinica (Bruce) J.F. Gmel, an endangered tropical tree of eastern Africa, using next-generation sequencing, vol. 15, p. -, 2016.
X. Y. Yang, Long, Z. C., Gichira, A. W., Guo, Y. H., Wang, Q. F., Chen, J. M., Yang, X. Y., Long, Z. C., Gichira, A. W., Guo, Y. H., Wang, Q. F., and Chen, J. M., Development of microsatellite markers in the tetraploid fern Ceratopteris thalictroides (Parkeriaceae) using RAD tag sequencing, vol. 15, p. -, 2016.

Pages