Publications

Found 11 results
Filters: Author is Q. Ma  [Clear All Filters]
2012
W. - W. Wang, Ma, Q., Xiang, Y., Zhu, S. - W., and Cheng, B. - J., Genome-wide analysis of immunophilin FKBP genes and expression patterns in Zea mays, vol. 11, pp. 1690-1700, 2012.
Agredano-Moreno LT, Reyes dlC, Martinez-Castilla LP and Sanchez de JE (2007). Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Mol. Biosyst. 3: 794-802. http://dx.doi.org/10.1039/b705803a PMid:17940662   Brillantes AB, Ondrias K, Scott A, Kobrinsky E, et al. (1994). Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77: 513-523. http://dx.doi.org/10.1016/0092-8674(94)90214-3   Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, et al. (1989). Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337: 476-478. http://dx.doi.org/10.1038/337476a0 PMid:2492638   Fruman DA, Burakoff SJ and Bierer BE (1994). Immunophilins in protein folding and immunosuppression. FASEB J. 8: 391-400. PMid:7513288   Galat A (2000). Sequence diversification of the FK506-binding proteins in several different genomes. Eur. J. Biochem. 267: 4945-4959. http://dx.doi.org/10.1046/j.1432-1327.2000.01509.x PMid:10931176   Galat A (2003). Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr. Top. Med. Chem. 3: 1315-1347. http://dx.doi.org/10.2174/1568026033451862 PMid:12871165   Gollan PJ and Bhave M (2010). Genome-wide analysis of genes encoding FK506-binding proteins in rice. Plant Mol. Biol. 72: 1-16. http://dx.doi.org/10.1007/s11103-009-9547-1 PMid:19768557   Gupta R, Mould RM, He Z and Luan S (2002). A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc. Natl. Acad. Sci. U. S. A. 99: 15806-15811. http://dx.doi.org/10.1073/pnas.222550399 PMid:12424338 PMCid:137797   Harding MW, Galat A, Uehling DE and Schreiber SL (1989). A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341: 758-760. http://dx.doi.org/10.1038/341758a0 PMid:2477715   Hartl FU and Hayer-Hartl M (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858. http://dx.doi.org/10.1126/science.1068408 PMid:11884745   He Z, Li L and Luan S (2004). Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol. 134: 1248-1267. http://dx.doi.org/10.1104/pp.103.031005 PMid:15047905 PMCid:419802   Heitman J, Movva NR and Hall MN (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905-909. http://dx.doi.org/10.1126/science.1715094 PMid:1715094   Holub EB (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2: 516-527. http://dx.doi.org/10.1038/35080508 PMid:11433358   Kamphausen T, Fanghanel J, Neumann D, Schulz B, et al. (2002). Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J. 32: 263-276. http://dx.doi.org/10.1046/j.1365-313X.2002.01420.x PMid:12410806   Luan S (1998). Immunophilins in animals and higher plants. Bot. Bull. Acad. Sin. 39: 217-223.   Marivet J, Frendo P and Burkard G (1995). DNA sequence analysis of a cyclophilin gene from maize: developmental expression and regulation by salicylic acid. Mol. Gen. Genet. 247: 222-228. http://dx.doi.org/10.1007/BF00705653 PMid:7753032   Michnick SW, Rosen MK, Wandless TJ, Karplus M, et al. (1991). Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin. Science 252: 836-839. http://dx.doi.org/10.1126/science.1709301 PMid:1709301   Romano P, Gray J, Horton P and Luan S (2005). Plant immunophilins: functional versatility beyond protein maturation. New Phytol. 166: 753-769. http://dx.doi.org/10.1111/j.1469-8137.2005.01373.x PMid:15869639   Rulten SL, Kinloch RA, Tateossian H, Robinson C, et al. (2006). The human FK506-binding proteins: characterization of human FKBP19. Mamm. Genome 17: 322-331. http://dx.doi.org/10.1007/s00335-005-0127-7 PMid:16596453   Schreiber SL (1991). Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251: 283-287. http://dx.doi.org/10.1126/science.1702904 PMid:1702904   Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, et al. (1995). Molecular genetics of plant disease resistance. Science 268: 661-667. http://dx.doi.org/10.1126/science.7732374 PMid:7732374   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Uchida T, Fujimori F, Tradler T, Fischer G, et al. (1999). Identification and characterization of a 14 kDa human protein as a novel parvulin-like peptidyl prolyl cis/trans isomerase. FEBS Lett. 446: 278-282. http://dx.doi.org/10.1016/S0014-5793(99)00239-2   Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, et al. (1991). Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252: 839-842. http://dx.doi.org/10.1126/science.1709302 PMid:1709302   Zhou T, Wang Y, Chen JQ, Araki H, et al. (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics 271: 402-415. http://dx.doi.org/10.1007/s00438-004-0990-z PMid:15014983
2011
Y. Gao, Zhang, Y. H., Jiang, H., Xiao, S. Q., Wang, S., Ma, Q., Sun, G. J., Li, F. J., Deng, Q., Dai, L. S., Zhao, Z. H., Cui, X. S., Zhang, S. M., Liu, D. F., and Zhang, J. B., Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs, vol. 10, pp. 779-791, 2011.
Amri EZ, Bertrand B, Ailhaud G and Grimaldi P (1991). Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449-1456. PMid:1753215 Arber S, Barbayannis FA, Hanser H, Schneider C, et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805-809. doi:10.1038/31729 PMid:9655397 Ball SG, Shuttleworth CA and Kielty CM (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. Int. J. Biochem. Cell Biol. 39: 379-391. doi:10.1016/j.biocel.2006.09.005 Britton CH, Mackey DW, Esser V, Foster DW, et al. (1997). Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics 40: 209-211. doi:10.1006/geno.1996.4539 PMid:9070950 Brouns F and van der Vusse GJ (1998). Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br. J. Nutr. 79: 117-128. doi:10.1079/BJN19980022 Chmurzynska A (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47: 39-48. doi:10.1007/BF03194597 PMid:16424607 Clement S, Hinz B, Dugina V, Gabbiani G, et al. (2005). The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J. Cell Sci. 118: 1395-1404. doi:10.1242/jcs.01732 PMid:15769852 Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, et al. (1992). Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult. Sci. 71: 1911-1920. PMid:1437978 Fu Y, Luo N, Klein RL and Garvey WT (2005). Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46: 1369-1379. doi:10.1194/jlr.M400373-JLR200 PMid:15834118 Gardan D, Louveau I and Gondret F (2007). Adipocyte- and heart-type fatty acid binding proteins are both expressed in subcutaneous and intramuscular porcine (Sus scrofa) adipocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 148: 14-19. doi:10.1016/j.cbpb.2007.03.017 PMid:17600747 Gregoire FM, Smas CM and Sul HS (1998). Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809. PMid:9674695 Hamilton DN, Miller KD, Ellis M, McKeith FK, et al. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci. 81: 2206-2212. PMid:12968695 Kadowaki T and Yamauchi T (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26: 439-451. doi:10.1210/er.2005-0005 PMid:15897298 Kadowaki T, Yamauchi T, Kubota N, Hara K, et al. (2007). Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Found. Symp. 286: 164-176. doi:10.1002/9780470985571.ch15 Malmstrom J, Lindberg H, Lindberg C, Bratt C, et al. (2004). Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol. Cell Proteomics 3: 466-477. doi:10.1074/mcp.M300108-MCP200 Marrube G, Rozen F, Pinto GB, Pacienza N, et al. (2004). New polymorphism of FASN gene in chicken. J. Appl. Genet. 45: 453-455. PMid:15523156 Morris CA, Cullen NG, Glass BC, Hyndman DL, et al. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18: 64-74. doi:10.1007/s00335-006-0102-y PMid:17242864 Muñoz G, Óvilo C, Noguera JL, Sanchez A, et al. (2003). Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34: 234-235. doi:10.1046/j.1365-2052.2003.00987.x PMid:12755829 Nowacka-Woszuk J, Szczerbal I, Fijak-Nowak H and Switonski M (2008). Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 49: 373-377. doi:10.1007/BF03195636 PMid:19029685 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. doi:10.1093/nar/29.9.e45 Picard B, Lefaucheur L, Berri C and Duclos MJ (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42: 415-431. doi:10.1051/rnd:2002035 Ponsuksili S, Murani E, Walz C, Schwerin M, et al. (2007). Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol. Genomics 29: 267-279. doi:10.1152/physiolgenomics.00178.2006 PMid:17264241 Price NT, Jackson VN, van der Leij FR, Cameron JM, et al. (2003). Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochem. J. 372: 871-879. doi:10.1042/BJ20030086 PMid:12662154    PMCid:1223454 Roy R, Gautier M, Hayes H, Laurent P, et al. (2001). Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93: 141-142. doi:10.1159/000056970 Roy R, Ordovas L, Zaragoza P, Romero A, et al. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37: 215-218. doi:10.1111/j.1365-2052.2006.01434.x PMid:16734679 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Woodbury. Sourdioux M, Brevelet C, Delabrosse Y and Douaire M (1999). Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult. Sci. 78: 1651-1657. PMid:10626637 Spiegelman BM, Frank M and Green H (1983). Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem. 258: 10083-10089. PMid:6411703 Tichopad A, Dilger M, Schwarz G and Pfaffl MW (2003). Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31: e122. doi:10.1093/nar/gng122 PMCid:219490 van der Leij FR, Takens J, van der Veen AY, Terpstra P, et al. (1997). Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim. Biophys. Acta 1352: 123-128. PMid:9199240 van der Leij FR, Cox KB, Jackson VN, Huijkman NC, et al. (2002). Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. J. Biol. Chem. 277: 26994-27005. doi:10.1074/jbc.M203189200 PMid:12015320 Wang D, Harrison W, Buja LM, Elder FF, et al. (1998). Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics 48: 314-323. doi:10.1006/geno.1997.5184 PMid:9545636 Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, et al. (1997). Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett. 409: 401-406. doi:10.1016/S0014-5793(97)00561-9 Yang YA, Morin PJ, Han WF, Chen T, et al. (2003). Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp. Cell Res. 282: 132-137. doi:10.1016/S0014-4827(02)00023-X Yu GS, Lu YC and Gulick T (1998). Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. J. Biol. Chem. 273: 32901-32909. doi:10.1074/jbc.273.49.32901 PMid:9830040 Zhao S, Wang J, Song X, Zhang X, et al. (2010). Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 7: 6. doi:10.1186/1743-7075-7-6 Zhao SH, Recknor J, Lunney JK, Nettleton D, et al. (2005). Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86: 618-625. doi:10.1016/j.ygeno.2005.08.001 PMid:16216716
Z. X. Chu, Ma, Q., Lin, Y. X., Tang, X. L., Zhou, Y. Q., Zhu, S. W., Fan, J., and Cheng, B. J., Genome-wide identification, classification, and analysis of two-component signal system genes in maize, vol. 10, pp. 3316-3330, 2011.
Aoyama T and Oka A (2003). Cytokinin signal transduction in plant cells. J. Plant Res. 116: 221-231. http://dx.doi.org/10.1007/s10265-003-0094-6 PMid:12836044   Asakura Y, Hagino T, Ohta Y, Aoki K, et al. (2003). Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Mol. Biol. 52: 331-341. http://dx.doi.org/10.1023/A:1023971315108 PMid:12856940   Bailey TL, Williams N, Misleh C and Li WW (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34: W369-W373. http://dx.doi.org/10.1093/nar/gkl198 PMid:16845028 PMCid:1538909   Brandstatter I and Kieber JJ (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009-1019. PMid:9634588 PMCid:144033   D'Agostino IB and Kieber JJ (1999). Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem. Sci. 24: 452-456. http://dx.doi.org/10.1016/S0968-0004(99)01465-6   D'Agostino IB, Deruere J and Kieber JJ (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124: 1706-1717. http://dx.doi.org/10.1104/pp.124.4.1706 PMid:11115887 PMCid:59868   Du L, Jiao F, Chu J, Jin G, et al. (2007). The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics 89: 697-707. http://dx.doi.org/10.1016/j.ygeno.2007.02.001 PMid:17408920   Forde BG (2002). Local and long-range signaling pathways regulating plant responses to nitrate. Annu. Rev. Plant Biol. 53: 203-224. http://dx.doi.org/10.1146/annurev.arplant.53.100301.135256 PMid:12221973   Grefen C and Harter K (2004). Plant two-component systems: principles, functions, complexity and cross talk. Planta 219: 733-742. http://dx.doi.org/10.1007/s00425-004-1316-4 PMid:15232695   Gu Z, Cavalcanti A, Chen FC, Bouman P, et al. (2002). Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol. Biol. Evol. 19: 256-262. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004079 PMid:11861885   Hass C, Lohrmann J, Albrecht V, Sweere U, et al. (2004). The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J. 23: 3290-3302. http://dx.doi.org/10.1038/sj.emboj.7600337 PMid:15282545 PMCid:514511   Hutchison CE and Kieber JJ (2002). Cytokinin signaling in Arabidopsis. Plant Cell 14: S47-S59. PMid:12045269 PMCid:151247   Hwang I and Sheen J (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389. http://dx.doi.org/10.1038/35096500 PMid:11574878   Hwang I, Chen HC and Sheen J (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515. http://dx.doi.org/10.1104/pp.005504 PMid:12068096 PMCid:161668   Ildoo H, Huei-Chi C and Jen S (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515. http://dx.doi.org/10.1104/pp.005504 PMid:12068096 PMCid:161668   Inoue T, Higuchi M, Hashimoto Y, Seki M, et al. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060-1063. http://dx.doi.org/10.1038/35059117 PMid:11234017   Lohrmann J, Buchholz G, Keitel C, Sweere U, et al. (1999). Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol. 1: 495-505. http://dx.doi.org/10.1111/j.1438-8677.1999.tb00775.x   Lohrmann J, Sweere U, Zabaleta E, Baurle I, et al. (2001). The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Mol. Genet. Genomics 265: 2-13. http://dx.doi.org/10.1007/s004380000400 PMid:11370868   Mahonen AP, Bonke M, Kauppinen L, Riikonen M, et al. (2000). A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14: 2938-2943. http://dx.doi.org/10.1101/gad.189200 PMid:11114883 PMCid:317089   Martín AC, del Pozo JC, Iglesias J, Rubio V, et al. (2000). Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24: 559-567. http://dx.doi.org/10.1046/j.1365-313x.2000.00893.x PMid:11123795   Mason MG, Mathews DE, Argyros DA, Maxwell BB, et al. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17: 3007-3018. http://dx.doi.org/10.1105/tpc.105.035451 PMid:16227453 PMCid:1276026   Mok DW and Mok MC (2001). Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89-118. http://dx.doi.org/10.1146/annurev.arplant.52.1.89 PMid:11337393   Pischke MS, Jones LG, Otsuga D, Fernandez DE, et al. (2002). An Arabidopsis histidine kinase is essential for megagametogenesis. Proc. Natl. Acad. Sci. U. S. A. 99: 15800-15805. http://dx.doi.org/10.1073/pnas.232580499 PMid:12426401 PMCid:137796   Riechmann JL, Heard J, Martin G, Reuber L, et al. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110. http://dx.doi.org/10.1126/science.290.5499.2105 PMid:11118137   Riefler M, Novak O, Strnad M and Schmulling T (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18: 40-54. http://dx.doi.org/10.1105/tpc.105.037796 PMid:16361392 PMCid:1323483   Romanov GA, Kieber JJ and Schmulling T (2002). A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett. 515: 39-43. http://dx.doi.org/10.1016/S0014-5793(02)02415-8   Sakai H, Aoyama T and Oka A (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24: 703-711. http://dx.doi.org/10.1046/j.1365-313x.2000.00909.x PMid:11135105   Schaller GE, Mathews DE, Gribskov M and Walker JC (2002). Two-Component Signalling Elements and Histidyl-Aspartyl Phosphorelays. In: The Arabidopsis book American Society of Plant Biologists (Somerville C and Meyerowitz E, eds.). DOI/10.1199/tab.0086, Available at [http:/www.aspb.org/publications/Arabidopsis]. Accessed...... Schnable PS, Ware D, Fulton RS, Stein JC, et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112-1115.   Stock AM, Robinson VL and Goudreau PN (2000). Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. http://dx.doi.org/10.1146/annurev.biochem.69.1.183 PMid:10966457   Suzuki T, Miwa K, Ishikawa K, Yamada H, et al. (2001). The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol. 42: 107-113. http://dx.doi.org/10.1093/pcp/pce037 PMid:11230563   Thomason P and Kay R (2000). Eukaryotic signal transduction via histidine-aspartate phosphorelay. J. Cell Sci. 113: 3141-3150. PMid:10954413   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   To JP, Haberer G, Ferreira FJ, Deruere J, et al. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: 658-671. http://dx.doi.org/10.1105/tpc.018978 PMid:14973166 PMCid:385279   Ueguchi C, Koizumi H, Suzuki T and Mizuno T (2001). Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 42: 231-235. http://dx.doi.org/10.1093/pcp/pce015 PMid:11230578   Urao T, Yakubov B, Yamaguchi-Shinozaki K and Shinozaki K (1998). Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett. 427: 175-178. http://dx.doi.org/10.1016/S0014-5793(98)00418-9   West AH and Stock AM (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369-376. http://dx.doi.org/10.1016/S0968-0004(01)01852-7   Yamada S and Shiro Y (2008). Structural basis of the signal transduction in the two-component system. Adv. Exp. Med. Biol. 631: 22-39. http://dx.doi.org/10.1007/978-0-387-78885-2_3 PMid:18792680   Yang S, Zhang X, Yue JX, Tian D, et al. (2008). Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Genet. Genomics 280: 187-198. http://dx.doi.org/10.1007/s00438-008-0355-0 PMid:18563445   Yonekura-Sakakibara K, Kojima M, Yamaya T and Sakakibara H (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 134: 1654-1661. http://dx.doi.org/10.1104/pp.103.037176 PMid:15064375 PMCid:419839
Q. Ma, Liu, S. F., Zhuang, Z. M., Lin, L., Sun, Z. Z., Liu, C. L., Su, Y. Q., and Tang, Q. S., Genomic structure, polymorphism and expression analysis of growth hormone-releasing hormone and pituitary adenylate cyclase activating polypeptide genes in the half-smooth tongue sole (Cynoglossus semilaevis), vol. 10, pp. 3828-3846, 2011.
Allendorf FW and Phelps SR (1980). Loss of genetic variation in a hatchery stock of cutthroat trout. Trans. Am. Fish. Soc. 109: 537-543. http://dx.doi.org/10.1577/1548-8659(1980)109<537:LOGVIA>2.0.CO;2   Almuly R, Skopal T and Funkenstein B (2008). Regulatory regions in the promoter and first intron of Sparus aurata growth hormone gene: Repression of gene activity by a polymorphic minisatellite. Comp. Biochem. Physiol. Part. D Genomics Proteomics 3: 43-50. http://dx.doi.org/10.1016/j.cbd.2006.12.006 PMid:20483206   Arimura A (1998). Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, Genetics and Molecular Research 10 (4): 3828-3846 (2011) ©FUNPEC-RP www.funpecrp.com.br   Sambrook J, Fritsch E and Maniatis T (1989). Molecular Cloning: A Laboratory Manual 1-3. Cold Spring Harbor Laboratory Press, New York.   Sze KH, Zhou H, Yang Y, He M, et al. (2007). Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology 148: 5042-5059. http://dx.doi.org/10.1210/en.2007-0576 PMid:17615143   Tao WJ and Boulding EG (2003). Associations between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity 91: 60-69. http://dx.doi.org/10.1038/sj.hdy.6800281 PMid:12815454   Weir BS and Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. http://dx.doi.org/10.2307/2408641   Wong AO, Li WS, Lee EK, Leung MY, et al. (2000). Pituitary adenylate cyclase activating polypeptide as a novel hypophysiotropic factor in fish. Biochem. Cell Biol. 78: 329-343. http://dx.doi.org/10.1139/o00-055 PMid:10949084   Yim JJ, Lee HW, Lee HS, Kim YW, et al. (2006). The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 7: 150-155. http://dx.doi.org/10.1038/sj.gene.6364274 PMid:16437124