Publications

Found 17 results
Filters: Author is X.H. Liu  [Clear All Filters]
2013
Z. P. Zheng and Liu, X. H., Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize, vol. 12, pp. 1243-1253, 2013.
Agrama HAS, Zakaria AG, Said FB and Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5: 187-195. http://dx.doi.org/10.1023/A:1009669507144   Bai W, Zhang H, Zhang Z, Teng F, et al. (2010). The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed. 129: 376-384.   Balint-Kurti PJ, Zwonitzer JC, Pe ME, Pea G, et al. (2008). Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations. Phytopathology 98: 315-320. http://dx.doi.org/10.1094/PHYTO-98-3-0315 PMid:18944082   Blair MW, Sandoval TA, Caldas GV, Beebe SE, et al. (2010). Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci. 49: 237-246. http://dx.doi.org/10.2135/cropsci2008.05.0246   Chen F, Zhu SW, Xiang Y, Jiang HY, et al. (2010). Molecular marker-assisted selection of the ae alleles in maize. Genet. Mol. Res. 9: 1074-1084. http://dx.doi.org/10.4238/vol9-2gmr799 PMid:20568052   Doerge RW and Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294. PMid:8770605 PMCid:1206957   Du W, Yu D and Fu S (2009). Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J. Integr. Plant Biol. 51: 868-878. http://dx.doi.org/10.1111/j.1744-7909.2009.00855.x PMid:19723246   Hao ZF, Li XH, Liu XL, Xie CX, et al. (2011). Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174: 165-177. http://dx.doi.org/10.1007/s10681-009-0091-5   Ibitoye DO and Akin-Idowu PE (2010). Marker-assisted-selection (MAS): A fast track to increase genetic gain in horticultural crop breeding. Afr. J. Biotechnol. 9: 8889-8895.   Jantaboon J, Siangliw M, Im-mark S, Jamboonsri W, et al. (2011). Ideotype breeding for submergence tolerance and cooking quality by marker-assisted selection in rice. Field Crops Res. 123: 206-213. http://dx.doi.org/10.1016/j.fcr.2011.05.001   Jiang C, Edmeades GO, Armstead I, Lafitte HR, et al. (1999). Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor. Appl. Genet. 99: 1106-1119. http://dx.doi.org/10.1007/s001220051315   Kebrom TH and Brutnell TP (2007). The molecular analysis of the shade avoidance syndrome in the grasses has begun. J. Exp. Bot. 58: 3079-3089. http://dx.doi.org/10.1093/jxb/erm205 PMid:17921475   Kraja AT and Dudley JW (2000). QTL analysis of two maize inbred line crosses. Maydica 45: 1-12.   Ku LX, Zhao WM, Zhang J, Wu LC, et al. (2010). Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor. Appl. Genet. 121: 951-959. http://dx.doi.org/10.1007/s00122-010-1364-z PMid:20526576   Kumar JR and Kumar BT (2009). Quantitative trait loci (QTL) mapping for crop improvement. Res. J. Biotechnol. 4: 67-79.   Kumar J, Mir RR, Kumar N and Kumar A (2010). Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed. 129: 617-621. http://dx.doi.org/10.1111/j.1439-0523.2009.01758.x   Li XB, Yan WG, Agrama H, Jia LM, et al. (2012). Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS One 7: e29350. http://dx.doi.org/10.1371/journal.pone.0029350 PMid:22291889 PMCid:3264563   Liao CJ, Wang YH, Lin JX, Lu HD, et al. (2011). Preliminary analysis on key agronomic traits relating to biomass and quality of silage maize. Fujian J. Agric. Sci. 26: 572-576.   Lima MDA, de Souza CL, Bento DAV, Bento DAV, et al. (2006). Mapping QTL for grain yield and plant traits in a tropical maize population. Mol. Breed. 17: 227-239. http://dx.doi.org/10.1007/s11032-005-5679-4   Liu JC, Chu Q, Cai HG, Mi GH, et al. (2010). SSR linkage map construction and QTL mapping for leaf area in maize. Yi Chuan 32: 625-631. http://dx.doi.org/10.3724/SP.J.1005.2010.00625 PMid:20566467   Liu XH, Tan ZB and Tan ZB (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. http://dx.doi.org/10.1007/s10681-008-9874-3   Lu M, Zhou F, Xie CX, Li MS, et al. (2007). Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Yi Chuan 29: 1131-1138. http://dx.doi.org/10.1360/yc-007-1131 PMid:17855265   Lu ZY, Li MS, Xie ZJ, Xie CX, et al. (2010). Study on the trend of yield components among maize hybrids in China. J. Maize Sci. 18: 13-17, 22.   Malosetti M, Ribaut JM, Vargas M, Crossa J, et al. (2008). A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161: 241-257. http://dx.doi.org/10.1007/s10681-007-9594-0   Messmer R, Fracheboud Y, Banziger M, Vargas M, et al. (2009). Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor. Appl. Genet. 119: 913-930. http://dx.doi.org/10.1007/s00122-009-1099-x PMid:19597726   Mickelson SM, Stuber CS, Senior L and Kaeppler SM (2002). Quantitative trait loci controlling leaf and tassel traits in a B73 x M o17 population of maize. Crop Sci. 42: 1902-1909. http://dx.doi.org/10.2135/cropsci2002.1902   Qiu LJ, Guo Y, Li Y, Wang XB, et al. (2011). Novel gene discovery of crops in China: status, challenging, and perspective. Acta Agronom. Sin. 37: 1-17. http://dx.doi.org/10.3724/SP.J.1006.2011.00001   Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. http://dx.doi.org/10.1007/s11032-006-9041-2   Sibov ST, de Souza CLJ, Garcia AA, Silva AR, et al. (2003). Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas 139: 107-115. http://dx.doi.org/10.1111/j.1601-5223.2003.01667.x PMid:15061811   Stendal C, Casler MD and Jung G (2006). Marker-assisted selection for neutral detergent fiber in smooth bromegrass. Crop Sci. 46: 303-311. http://dx.doi.org/10.2135/cropsci2005.0150   Tang JH, Teng WT, Yan JB, Ma XQ, et al. (2007). Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 155: 117-124. http://dx.doi.org/10.1007/s10681-006-9312-3   Tollenaar M and Wu J (1999). Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 39: 1597-1604. http://dx.doi.org/10.2135/cropsci1999.3961597x   Tsonev S, Todorovska E, Avramova V, Kolev S, et al. (2009). Genomics assisted improvement of drought tolerance in maize: QTL approaches. Biotechnol. Biotechnol. Equipment 23: 1410-1413. http://dx.doi.org/10.2478/v10133-009-0004-8   Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185   Wang CL, Cheng FF, Sun ZH, Tang JH, et al. (2008). Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129-1139. http://dx.doi.org/10.1007/s00122-008-0851-y PMid:18677461   Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh NC. Availabe at [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]. Accessed March 10, 2010.   Xiao YN, Li XH, George ML, Li MS, et al. (2005). Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol. Biol. Rep. 23: 155-165. http://dx.doi.org/10.1007/BF02772706   Zhang Y, Li YX, Wang Y, Liu ZZ, et al. (2010). Stability of QTL across environments and QTL-by-environment interactions for plant and ear height in maize. Agric. Sci. China 9: 1400-1412. http://dx.doi.org/10.1016/S1671-2927(09)60231-5   Zhou GS, Liu F, Cao JH, Yue B, et al. (2011). Detecting quantitative trait loci for water use efficiency in rice using a recombinant inbred line population. Chin. Sci. Bull. 56: 1481-1487. http://dx.doi.org/10.1007/s11434-011-4444-9
Z. P. Zheng and Liu, X. H., QTL identification of ear leaf morphometric traits under different nitrogen regimes in maize, vol. 12, pp. 4342-4351, 2013.
2012
Z. P. Zheng, Liu, X. H., Huang, Y. B., Wu, X., He, C., and Li, Z., QTLs for days to silking in a recombinant inbred line maize population subjected to high and low nitrogen regimes, vol. 11, pp. 790-798, 2012.
Agrama HAS, Zakaria AG, Said FB and Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5: 187-195. http://dx.doi.org/10.1023/A:1009669507144 Bänziger M, Betran FJ and Lafitte HR (1997). Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci. 37: 1103-1109. http://dx.doi.org/10.2135/cropsci1997.0011183X003700040012x Doerge RW and Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294. PMid:8770605    PMCid:1206957 Gong Q, Wang TY, Tan XL, Shi YS, et al. (2006). QTL analysis of traits related to flowering in elite maize inbred line Dan330 with early maturity. J. Plant Genet. Resour. 7: 437-441. Hu YM, Wu X, Li CX, Fu ZY, et al. (2008). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J. Nanjing Agric. Univ. 31: 11-16. Khairallah MM, Bohn M, Jiang C, Deutsch JA, et al. (1998). Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed. 117: 309-318. http://dx.doi.org/10.1111/j.1439-0523.1998.tb01947.x Li YL, Li XH, Dong YB, Niu SZ, et al. (2007). QTL mapping of developmental stages using F2:3 and BC2S1 populations derived from the same cross in maize. Acta Agric. Boreali-Sin. 22: 38-43. Liu XH, Tan ZB and Tan ZB (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. http://dx.doi.org/10.1007/s10681-008-9874-3 Liu X, Zheng Z, Tan Z, Li Z, et al. (2010). QTL mapping for controlling anthesis-silking interval based on RIL population in maize. Afr. J. Biotechnol. 9: 950-955. McIntyre CL, Mathews KL, Rattey A, Chapman SC, et al. (2010). Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120: 527-541. http://dx.doi.org/10.1007/s00122-009-1173-4 PMid:19865806 Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, et al. (1996). Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92: 905-914. http://dx.doi.org/10.1007/BF00221905 Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. http://dx.doi.org/10.1007/s11032-006-9041-2 Sabadin PK, Souza CL Jr, Souza AP and Garcia AAF (2008). QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194-203. http://dx.doi.org/10.1111/j.0018-0661.2008.02065.x Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. http://dx.doi.org/10.1007/s00122-007-0512-6 PMid:17308934 Tang H, Yan JB, Huang YQ, Zheng YL, et al. (2005). QTL mapping of five agronomic traits in maize. Yi. Chuan Xue. Bao. 32: 203-209. PMid:15759869 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185 Wan XY, Wan JM, Jiang L, Wang JK, et al. (2006). QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. Appl. Genet. 112: 1258-1270. http://dx.doi.org/10.1007/s00122-006-0227-0 PMid:16477428 Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. Available at [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]. Accessed March 10, 2010. Wu JW, Liu C, Wang TY, Li Y, et al. (2008). QTL analysis of flowering related traits in maize under different water regimes. J. Maize Sci. 16: 61-65. Yang GB, Liu XY, Gao DJ, Tan FZ, et al. (2007). Constrict factors and countermeasures of maize planting in northern premature areas of Heilongjiang. Heilongjiang Agric. Sci. 6: 18-19. Yang X, Guo Y, Yan J, Zhang J, et al. (2010). Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor. Appl. Genet. 120: 665-678. http://dx.doi.org/10.1007/s00122-009-1184-1 PMid:19856173 Zhang JM, Liu C, Shi YS, Song YC, et al. (2004). QTL analysis of parameters related to flowering in maize under drought stress and normal irrigation condition. J. Plant Genet. Resour. 5: 161-165.
2011
X. H. Liu, He, S. L., Zheng, Z. P., Tan, Z. B., Li, Z., and He, C., Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes, vol. 10, pp. 3267-3274, 2011.
Agrama HAS, Zakaria AG, Said FB and Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5: 187-195. http://dx.doi.org/10.1023/A:1009669507144 An D, Su J, Liu Q, Zhu Y, et al. (2006). Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284: 73-84. http://dx.doi.org/10.1007/s11104-006-0030-3 Doerge RW and Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294. PMid:8770605    PMCid:1206957 Duvick DN, Smith JSC and Cooper M (2004). Long-term selection in a commercial hybrid maize breeding program. Plant Breed. Rev. 24: 109-151. Frova C, Krajewski P, di Fonzo N, Villa M, et al. (1999). Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor. Appl. Genet. 99: 280-288. http://dx.doi.org/10.1007/s001220051233 Gallais A and Hirel B (2004). An approach to the genetics of nitrogen use efficiency in maize. J. Exp. Bot. 55: 295-306. http://dx.doi.org/10.1093/jxb/erh006 PMid:14739258 Guo J, Su G, Zhang J and Wang G (2008). Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr. J. Biotechnol. 7: 1829-1838. Huang YF, Madur D, Combes V, Ky CL, et al. (2010). The genetic architecture of grain yield and related traits in Zea maize L. revealed by comparing intermated and conventional populations. Genetics 186: 395-404. http://dx.doi.org/10.1534/genetics.110.113878 PMid:20592258    PMCid:2940303 Li M, Guo X, Zhang M, Wang X, et al. (2010). Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci. 178: 454-462. http://dx.doi.org/10.1016/j.plantsci.2010.02.019 Lian X, Xing Y, Yan H, Xu C, et al. (2005). QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet. 112: 85-96. http://dx.doi.org/10.1007/s00122-005-0108-y PMid:16189659 Liu XH, Tan ZB and Rong TZ (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. http://dx.doi.org/10.1007/s10681-008-9874-3 Liu XH, He SL, Zheng ZP, Huang YB, et al. (2010). QTL identification for row number per ear and grain number per row in maize. Maydica 55: 127-133. Liu ZH, Xie HL, Tian GW, Chen SJ, et al. (2008). QTL mapping of nutrient components in maize kernels under low nitrogen conditions. Plant Breed. 127: 279-285. http://dx.doi.org/10.1111/j.1439-0523.2007.01465.x Lu GH, Tang JH, Yan JB, Ma XQ, et al. (2006). Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J. Integr. Plant Biol. 48: 1233-1243. http://dx.doi.org/10.1111/j.1744-7909.2006.00289.x Pilet ML, Duplan G, Archipiano H, Barret P, et al. (2001). Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci. 41: 197-205. http://dx.doi.org/10.2135/cropsci2001.411197x Prasanna BM, Beiki AH, Sekhar JC, Srinivas A, et al. (2009). Mapping QTLs for component traits influencing drought stress tolerance of maize (Zea mays L) in India. J. Plant Biochem. Biotechnol. 18: 151-160. Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, et al. (1997). Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94: 887-896. http://dx.doi.org/10.1007/s001220050492 Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. http://dx.doi.org/10.1007/s11032-006-9041-2 Sabadin PK, Souza CL Jr, Souza AP and Garcia AAF (2008). QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194-203. http://dx.doi.org/10.1111/j.0018-0661.2008.02065.x Tang J, Yan J, Ma X, Teng W, et al. (2010). Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor. Appl. Genet. 120: 333-340. http://dx.doi.org/10.1007/s00122-009-1213-0 PMid:19936698 Trachsel S, Messmer R, Stamp P, Ruta N, et al. (2010). QTLs for early vigor of tropical maize. Mol. Breed. 25: 91-103. http://dx.doi.org/10.1007/s11032-009-9310-y Tuberosa R, Salvi S, Sanguineti MC, Landi P, et al. (2002). Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann. Bot. 89: 941-963. http://dx.doi.org/10.1093/aob/mcf134 PMid:12102519 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185 Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. Available at [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]. Accessed March 10, 2010. Xiao YN, Li XH, George ML, Li MS, et al. (2005). Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol. Biol. Rep. 23: 155-165. http://dx.doi.org/10.1007/BF02772706
S. Q. Liu, Liu, X. H., and Jiang, L. W., Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber, vol. 10, pp. 2613-2636, 2011.
Acosta IF, Laparra H, Romero SP, Schmelz E, et al. (2009). Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323: 262-265. http://dx.doi.org/10.1126/science.1164645 PMid:19131630 Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694    PMCid:146917 Bailey TL and Elkan C (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2: 28-36. PMid:7584402 Bannenberg G, Martinez M, Hamberg M and Castresana C (2009). Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44: 85-95. http://dx.doi.org/10.1007/s11745-008-3245-7 PMid:18949503 Bell E, Creelman RA and Mullet JE (1995). A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 92: 8675-8679. http://dx.doi.org/10.1073/pnas.92.19.8675 Cannon SB, Mitra A, Baumgarten A, Young ND, et al. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4: 10. http://dx.doi.org/10.1186/1471-2229-4-10 PMid:15171794    PMCid:446195 Chen G, Hackett R, Walker D, Taylor A, et al. (2004). Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol. 136: 2641-2651. http://dx.doi.org/10.1104/pp.104.041608 PMid:15347800    PMCid:523329 Chen XS, Kurre U, Jenkins NA, Copeland NG, et al. (1994). cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure, and chromosomal localizations of murine 12-lipoxygenases. J. Biol. Chem. 269: 13979-13987. PMid:8188678 Corpet F (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881-10890. http://dx.doi.org/10.1093/nar/16.22.10881 PMid:2849754    PMCid:338945 Defilippi BG, Dandekar AM and Kader AA (2005). Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J. Agric. Food Chem. 53: 3133-3141. http://dx.doi.org/10.1021/jf047892x PMid:15826070 Felsenstein J (1989). PHYLIP: Phylogeny Inference Package (Version 3.2). Cladistics, 164-166. Feussner I and Wasternack C (2002). The lipoxygenase pathway. Annu. Rev. Plant Biol. 53: 275-297. http://dx.doi.org/10.1146/annurev.arplant.53.100301.135248 PMid:12221977 Feussner I, Kühn H and Wasternack C (2001). Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci. 6: 268-273. http://dx.doi.org/10.1016/S1360-1385(01)01950-1 Gao X, Starr J, Gobel C, Engelberth J, et al. (2008). Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant Microbe Interact. 21: 98-109. http://dx.doi.org/10.1094/MPMI-21-1-0098 PMid:18052887 Grechkin AN, Kuramshin RA, Latypov SK, Safonova YY, et al. (1991). Hydroperoxides of alpha-ketols. Novel products of the plant lipoxygenase pathway. Eur. J. Biochem. 199: 451-457. http://dx.doi.org/10.1111/j.1432-1033.1991.tb16143.x PMid:1906404 Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98. 41: 95-98. He Y, Fukushige H, Hildebrand DF and Gan S (2002). Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128: 876-884. http://dx.doi.org/10.1104/pp.010843 PMid:11891244    PMCid:152201 Howe GA and Schilmiller AL (2002). Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 5: 230-236. http://dx.doi.org/10.1016/S1369-5266(02)00250-9 Huang S, Li R, Zhang Z, Li L, et al. (2009). The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41: 1275-1281. http://dx.doi.org/10.1038/ng.475 PMid:19881527 Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, et al. (2001). Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13: 613-626. PMid:11251100    PMCid:135504 Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 PMid:17846036 Letunic I, Copley RR, Schmidt S, Ciccarelli FD, et al. (2004). SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32: D142-D144. http://dx.doi.org/10.1093/nar/gkh088 PMid:14681379    PMCid:308822 Liavonchanka A and Feussner I (2006). Lipoxygenases: occurrence, functions and catalysis. J. Plant Physiol. 163: 348- 357. http://dx.doi.org/10.1016/j.jplph.2005.11.006 PMid:16386332 Matsui K, Hijiya K, Tabuchi Y and Kajiwara T (1999). Cucumber cotyledon lipoxygenase during postgerminative growth. Its expression and action on lipid bodies. Plant Physiol. 119: 1279-1288. http://dx.doi.org/10.1104/pp.119.4.1279 PMid:10198086    PMCid:32012 Matsui K, Minami A, Hornung E, Shibata H, et al. (2006). Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Phytochemistry 67: 649-657. http://dx.doi.org/10.1016/j.phytochem.2006.01.006 PMid:16497344 Melan MA, Dong X, Endara ME, Davis KR, et al. (1993). An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 101: 441-450. http://dx.doi.org/10.1104/pp.101.2.441 PMid:7506426    PMCid:160590 Minor W, Steczko J, Bolin JT, Otwinowski Z, et al. (1993). Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. Biochemistry 32: 6320-6323. http://dx.doi.org/10.1021/bi00076a003 PMid:8518276 Nicholas KB, Hugh BN Jr and David WD (1997). GeneDoc: analysis and visualization of genetic variation. Embnew News 4: 14. Page RD (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358. PMid:8902363 Perez AG, Sanz C, Olias R and Olias JM (1999). Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. J. Agric. Food Chem. 47: 249-253. http://dx.doi.org/10.1021/jf9807519 Rudolph M, Schlereth A, Korner M, Feussner K et al. (2010). The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. J. Exp. Bot. 62: 749-760. http://dx.doi.org/10.1093/jxb/erq310 PMid:21081663    PMCid:3003817 Schneider C, Pratt DA, Porter NA and Brash AR (2007). Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem. Biol. 14: 473-488. http://dx.doi.org/10.1016/j.chembiol.2007.04.007 Shibata D, Steczko J, Dixon JE, Hermodson M, et al. (1987). Primary structure of soybean lipoxygenase-1. J. Biol. Chem. 262: 10080-10085. PMid:3112136 Shibata D, Steczko J, Dixon JE, Andrews PC, et al. (1988). Primary structure of soybean lipoxygenase L-2. J. Biol. Chem. 263: 6816-6821. PMid:2834391 Steczko J, Donoho GP, Clemens JC, Dixon JE, et al. (1992). Conserved histidine residues in soybean lipoxygenase: functional consequences of their replacement. Biochemistry 31: 4053-4057. http://dx.doi.org/10.1021/bi00131a022 PMid:1567851 Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738 Tanurdzic M and Banks JA (2004). Sex-determining mechanisms in land plants. Plant Cell 16 Suppl: S61-S71. http://dx.doi.org/10.1105/tpc.016667 PMid:15084718    PMCid:2643385 Wang R, Shen W, Liu L, Jiang L, et al. (2008). A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol. Biol. 66: 401-414. http://dx.doi.org/10.1007/s11103-007-9278-0 PMid:18185911 Zhang B, Chen K, Bowen J, Allan A, et al. (2006). Differential expression within the LOX gene family in ripening kiwifruit. J. Exp. Bot. 57: 3825-3836. http://dx.doi.org/10.1093/jxb/erl151 PMid:17032731 Zhou G, Qi J, Ren N, Cheng J, et al. (2009). Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 60: 638-648. http://dx.doi.org/10.1111/j.1365-313X.2009.03988.x PMid:19656341