

mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle

L.Q. Han ${ }^{1,2}$, H.J. Li ${ }^{1}$, Y.Y. Wang ${ }^{1}$, H.S. Zhu ${ }^{1}$, L.F. Wang ${ }^{1}$, Y.J. Guo ${ }^{1}$, W.F. Lu ${ }^{1}$, Y.L. Wang ${ }^{2}$ and G.Y. Yang ${ }^{1,2}$
${ }^{1}$ College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
${ }^{2}$ Key Laboratory of Animal Growth and Development, Ministry of Agriculture, Zhengzhou, China
Corresponding author: G.Y. Yang
E-mail: mrswx@yahoo.cn

Genet. Mol. Res. 9 (2): 1250-1257 (2010)
Received March 4, 2010
Accepted April 3, 2010
Published June 29, 2010
DOI 10.4238/vol9-2gmr814

Abstract

The functions of distinct isoforms of solute carrier family 27 transporters (SLC27A1-6), acetyl-CoA carboxylase (ACACA, ACACB), stearoyl-CoA desaturase (SCD1-4), fatty acid desaturase (FADS1-3), LPIN (LPIN1-3), insulin-induced gene (INSIG1, 2), and peroxisome proliferator-activated receptor gamma coactivator1 (PPARGC1A, B) were studied in the mouse mammary gland from pregnancy to lactation. The relative mRNA abundance and percent change in real-time PCR were determined. mRNA expression of SLC27A3 and SLC27A4 was 37- and 1.4 -fold more upregulated at 12 days of lactation, respectively ($\mathrm{P}<0.01$). Transcripts of SCD isoforms were the most abundant, accounting for 59\% of all genes measured, and PPARGC1 isoforms were the least $(0.06 \%$ of all genes measured). The mRNA abundance from ACC, FADS and LPIN accounted for 29,9 and 2.6%, respectively. INSIG1 mRNA expression was 32 -fold more upregulated ($\mathrm{P}<0.05$), while PPARGC1B was 0.18 fold downregulated at 18 days of lactation ($\mathrm{P}<0.01$). We concluded that

mRNA abundance and expression of these isoforms are affected by the stage of lactation.

Key words: Isoform; Lactation; Lipogenic gene;
Mouse mammary gland; Quantitative real-time PCR

