

Novel representation of RNA secondary structure used to improve prediction algorithms

Q. Zou¹, C. Lin¹, X.-Y. Liu², Y.-P. Han³, W.-B. Li³ and M.-Z. Guo²

¹School of Information Science and Technology, Xiamen University, Xiamen, China

²School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

³Key Laboratory of Soybean Biology, Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China

Corresponding author: M.-Z. Guo E-mail: maozuguo@hit.edu.cn

Genet. Mol. Res. 10 (3): 1986-1998 (2011) Received November 29, 2010 Accepted July 24, 2011 Published September 9, 2011 DOI http://dx.doi.org/10.4238/vol10-3gmr1181

ABSTRACT. We propose a novel representation of RNA secondary structure for a quick comparison of different structures. Secondary structure was viewed as a set of stems and each stem was represented by two values according to its position. Using this representation, we improved the comparative sequence analysis method results and the minimum free-energy model. In the comparative sequence analysis method, a novel algorithm independent of multiple sequence alignment was developed to improve performance. When dealing with a single-RNA sequence, the minimum free-energy model is improved by combining it with RNA class information. Secondary structure prediction experiments were done on tRNA and RNAse P RNA; sensitivity and specificity were both improved. Furthermore, software programs were developed for non-commercial use.

Key words: RNA secondary structure; Dot plots; Stem; Comparative sequence analysis