Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas

Y. Lu1,2, W.H. Xu1, Y.X. Xie1, X. Zhang1, J.J. Pu1, Y.X. Qi1 and H.P. Li1

1College of Natural Resources and Environment, South China Agriculture University, Wushan, China
2Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Hainan, China
3Shangrao Normal University, Zhimin State in Shangrao, JiangXi, China

Corresponding author: H.P. Li
E-mail: ytluy2010@163.com

Received January 5, 2011
Accepted August 17, 2011
Published December 15, 2011
DOI http://dx.doi.org/10.4238/2011.December.15.1

ABSTRACT. Commercial banana varieties are highly susceptible to fungal pathogens, as well as bacterial pathogens, nematodes, viruses, and insect pests. The largest known family of plant resistance genes encodes proteins with nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. Conserved motifs in such genes in diverse plant species offer a means for the isolation of candidate genes in banana that may be involved in plant defense. Six degenerate PCR primers were designed to target NBS and additional domains were tested on commercial banana species Musa acuminata subsp malaccensis and the Musa AAB Group propagated in vitro and plants maintained in a greenhouse. Total DNA was isolated by a modified CTAB extraction technique. Four resistance gene analogs were amplified and deposited in GenBank and assigned numbers HQ199833-HQ199836. The predicted amino acid sequences compared to the amino acid sequences of known resistance genes (MRGL1, MRGL2, MRGL3, and MRGL4) revealed significant sequence similarity. The presence of consensus do-
mains, namely kinase-1a, kinase-2 and hydrophobic domain, provided evidence that the cloned sequences belong to the typical non-Toll/interleukin-1 receptor-like domain NBS-LRR gene family.

Key words: Resistance genes; NBS-LRR; Banana