Neuroprotective effects of NEP1-40 and fasudil on Nogo-A expression in neonatal rats with hypoxic-ischemic brain damage

W.W. Zhu*1, X.L. Ma*2, A.L. Guo1, H.Y. Zhao1 and H.H. Luo1

1Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, P.R. China
2Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, P.R. China

*These authors contributed equally to this study.
Corresponding author: W.W. Zhu
E-mail: jinzxyyzhww@yahoo.com.cn

Received March 25, 2011
Accepted August 8, 2011
Published November 29, 2011
DOI http://dx.doi.org/10.4238/2011.November.29.9

ABSTRACT. The hypoxic-ischemic encephalopathy caused by peripartum asphyxia is a serious disease in newborn infants, and effective therapies need to be developed to reduce injury-related disorders. We evaluated the effects of NEP1-40 and fasudil on Nogo-A expression in neonatal hypoxic-ischemic brain damage (HIBD) rats. Seven-day-old Wistar rats were randomly divided into control, HIBD, NEP1-40, and fasudil groups. NEP1-40 and fasudil groups were injected intraperitoneally with these compounds. Rat brains at 6, 24, 72 h, and 7 days after HIBD were collected to determine histopathological damage and the expression levels of Nogo-A. Histopathological damage was reduced in NEP1-40 and fasudil groups compared with the untreated HIBD group. The expression of Nogo-A in the HIBD group was significantly higher than that in control, NEP1-40 and fasudil groups at the same times. Compared with the fasudil group, the expression levels of Nogo-A were significantly reduced in the NEP1-40 group. We
conclude that NPE1-40 and fasudil have potential for neuroprotective effects in the neonatal rat HIBD model, mediated by inhibiting Nogo-A/Rho pathways.

Key words: Hypoxic-ischemic brain damage; NEP1-40; Fasudil; Nogo-A