Absence of $SH2B3$ mutation in nonobese diabetic mice

Y.J. Li$^{1,*}$, X.Y. Li$^{1,*}$, X.R. Guo$^1$, Y. Li$^1$, B.F. Shen$^1$, Y.C. Shi$^2$ and J.Y. Zhang$^1$

$^1$Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P.R. China
$^2$Research Center of Molecular Biology, Inner Mongolia Medical College, Hohhot, P.R. China

*These authors contributed equally to this study.
Corresponding authors: J.Y. Zhang / Y.C. Shi
E-mail: zhangjy@nic.bmi.ac.cn / ycshi5388@yahoo.com.cn

Received September 19, 2011
Accepted January 30, 2012
Published May 9, 2012
DOI http://dx.doi.org/10.4238/2012.May.9.6

ABSTRACT. Type 1 diabetes is a chronic progressive autoimmune disease characterized by mononuclear cell infiltration, with subsequent destruction of insulin-producing β-cells. Studies have identified strong associations between type 1 diabetes and several chromosome regions, including 12q24. Association between type 1 diabetes and 12q24 arises from SNP rs3184504; rs3184504 is a nonsynonymous SNP in exon 3 of $SH2B3$ (also known as $LNK$). Nonobese diabetic (NOD) mice recapitulate many aspects of the pathogenesis of type 1 diabetes in humans and are therefore frequently used in studies addressing the cellular and molecular mechanisms of this disease. It is of interest to know whether there is a similar mutation of $SH2B3$ in NOD mice. We found that the $SH2B3$ mutation is absent in NOD mice. To our knowledge, this is the first report of the sequence and the protein levels of SH2B3 in NOD mice.

Key words: Mutation; $SH2B3$; Single nucleotide polymorphism; NOD