Impact of cold ischemia on cytokines after partial liver transplantation in rats

Southwest Hospital & Institute of Hepatobiliary Surgery, Third Military Medical University, Chongqing, China

Corresponding author: P. Bie
E-mail: qiqinganbp@yeah.net

Received March 2, 2013
Accepted July 29, 2013
Published September 27, 2013
DOI http://dx.doi.org/10.4238/2013.September.27.1

ABSTRACT. To study the impact of cold ischemia on tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) expression after liver transplantation, a stable model of partial liver transplantation in rats was established. The experimental animals were divided into the following groups: a partial hepatectomy control group, a group that received partial liver transplantation after 30 min of cold ischemia (experimental group A), and a group that received a partial liver transplantation after 10 h of cold ischemia (experimental group B). The survival rate was observed in each group. The liver tissue was sampled 1, 2, and 4 days after surgery, and immunohistochemical detection of proliferating cell nuclear antigen TNF-α and IL-10 was performed. The correlation between liver regeneration and TNF-α and IL-10 expression was analyzed, and the impact of the 2 cytokines on rat liver regeneration after liver transplantation was evaluated. The survival rates of rats in the partial hepatectomy control group, in the group that received a partial liver transplantation after 30 min of cold ischemia, and the group that received a partial liver transplantation after 10 h of cold ischemia were 100, 70, and 33.3%, respectively. The expression of proliferating cell nuclear antigen and TNF-α was decreased (P < 0.05), and IL-10
expression was increased (P < 0.05) in animals that received a partial liver transplant after 10 h of cold ischemia compared with that in the animals that received a partial liver transplant after 30 min of cold ischemia. We conclude that with the extension of cold ischemic time, liver regeneration and survival rate after liver transplantation decreased. TNF-α and IL-10 play important regulatory roles in the regeneration process of transplanted livers.

Key words: Liver transplantation; Liver regeneration; Interleukin-10; Tumor necrosis factor