Analysis of GATA1 mutations and leukemogenesis in newborns with Down syndrome

L.B. Queiroz¹, B.D. Lima¹, J.F. Mazzeu², R. Camargo¹, M.S. Córdoba⁴, I.Q. Magalhães⁴, C. Martins-de-Sá¹ and I. Ferrari²

¹Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brasil
²Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF, Brasil
³Programa em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brasil
⁴Hospital Universitário, Universidade de Brasília, Brasília, DF, Brasil
⁵Núcleo de Oncologia e Hematologia Pediátrica, Secretaria de Saúde do DF, Brasília, DF, Brasil

Corresponding author: B.D. Lima
E-mail: bdlima@unb.br / beatrizdolabela@gmail.com

Received November 26, 2012
Accepted July 25, 2013
Published October 18, 2013
DOI http://dx.doi.org/10.4238/2013.October.18.1

ABSTRACT. It has been reported that patients with Down syndrome (DS) frequently develop transient myeloproliferative disorder (TMD) and less commonly myeloid leukemia in DS (ML-DS). We examined the pathogenetic relationship of these conditions with somatic mutations of the GATA1 gene in children with both TMD and ML-DS. To determine the incidence of GATA1 mutations in a cohort of DS patients and the applicability of these mutations as a clonal marker to detect minimal residual disease, we screened 198 samples of 169 patients with DS for mutations in GATA1 exon 2 by direct sequencing. Novel mutations were detected in four of the 169 DS patients (2 with TMD and 2 with ML-DS). We examined spontaneous remission and response to therapy in TMD and ML-DS patients and concluded that
these mutations can be used as stable markers in PCR analysis to monitor these events.

**Key words:** Down syndrome; Transient myeloproliferative disorder; *GATA1* mutation; Myeloid leukemia in DS; Minimal residual disease