Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation

1Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
2Center of Biochemistry, University of South China, Hengyang, China
3College of Pharmacology, Guangxi Medical University, Nanning, China

*These authors contributed equally to this study.
Corresponding authors: H.S. Ou / A.Z. Tang
E-mail: heshengoucn@163.com / tanganzhou@126.com

Received August 15, 2013
Accepted March 27, 2013
Published November 7, 2013
DOI http://dx.doi.org/10.4238/2013.November.7.1

ABSTRACT. We examined the effect of microRNAs on 3T3-L1 adipocyte differentiation and expression of adipocyte-specific gene fatty acid-binding protein 4 (FABP4). We screened and identified adipo-related microRNAs during 3T3-L1 adipocyte differentiation with a microRNA microarray. High expression plasmids of miR-24 and miR-21 were constructed and transfected into 3T3-L1 preadipocytes by lipofectamine. The effects of miR-24 and miR-21 on 3T3-L1 adipocyte differentiation were observed, and the protein and mRNA expression levels of FABP4 and AP-1 were determined. The expression profiles of microRNAs significantly changed during 3T3-L1 adipocyte differentiation. The expression of 33 microRNAs was downregulated, among which downregulation of miR-24 was the most extensive. There were 17 microRNAs with upregulated expression; the highest levels were found for miR-21. miR-24 significantly inhibited 3T3-L1
adipocyte differentiation and maturity, while miR-21 had no significant effect. In addition, miR-24 significantly inhibited the expression of FABP4, while it upregulated AP-1 expression, but had no effect on the level of FABP4 mRNA. miR-21 had no effect on FABP4 protein and mRNA expression. AP-1 silencing could, at least partially, reverse the inhibitory effect of miR-24 on FABP4 expression. We conclude that microRNA expression profiles change significantly during 3T3-L1 adipocyte differentiation and that miR-24 plays an important role in regulating adipocyte differentiation and FABP4 expression. The mechanism involved may be the upregulation of AP-1.

Key words: MicroRNA; 3T3-L1 preadipocyte; FABP4; AP-1; Adipocyte differentiation