Construction and functional identification of a hepatitis B virus S protein small hairpin RNA recombinant adenovirus

S. Wang1*, Y.Z. Liu2*, D.D. Qin1, C.C. Zou1, Y.R. Sheng1 A.L. Huang1 and H. Tang1

1Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
2Department of Forensic Medicine, Chongqing Medical University, Chongqing, China

*These authors contributed equally to this study.
Corresponding author: H. Tang
E-mail: tanghua86162003@aliyun.com

Received May 28, 2013
Accepted October 10, 2013
Published February 25, 2014
DOI http://dx.doi.org/10.4238/2014.February.25.4

ABSTRACT. Hepatitis B virus S protein (HBs) plays an important role in hepatocellular carcinoma progression. However, to date, no direct and effective methods exist to research the function of HBs. Here, we combined the technology of RNA interference with recombinant adenovirus, constructed a recombinant adenovirus-expressing small hairpin RNA of HBs, and infected HepG2.2.15 cells. Then, reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time PCR, enzyme-linked immunosorbent assay, and Western blot analysis were performed to verify the interference effects. As a result, a recombinant adenovirus was successfully constructed and effectively packaged in AD293 cells, and it significantly inhibited HBs mRNA and protein expression in vitro. Our study may provide a novel tool to study HBs function.

Key words: Hepatitis B virus S protein small hairpin RNA; Hepatitis B virus S protein; Recombinant adenovirus