In vivo mechanism study of NGAL in rat renal ischemia-reperfusion injury

X.J. Zang¹, S.X. An², Z. Feng¹, Y.P. Xia¹, Y. Song¹ and Q. Yu²

¹Department of Nephrology, Songjiang Branch of the First Affiliated People’s Hospital, Shanghai Jiaotong University, Shanghai, China
²Department of Nephrology, The First Affiliated People’s Hospital, Shanghai Jiaotong University, Shanghai, China

Corresponding author: X.J. Zang
E-mail: zangxijuayan@163.com

Received October 7, 2013
Accepted May 10, 2014
Published October 27, 2014
DOI http://dx.doi.org/10.4238/2014.October.27.15

ABSTRACT. This study aimed to determine the protective effect and mechanism of neutrophil gelatinase-associated lipocalin (NGAL) in rat kidney on ischemia/reperfusion injury (I/R). The rat I/R model was set up by cutting one kidney and clamping the contralateral renal pedicle for 45 min. Male SD rats were randomly divided into sham-operation, I/R and NGAL groups. Hematoxylin-eosin staining was performed to observe the renal pathological changes in the 3 groups; serum creatinine (Scr) and blood urea nitrogen (BUN) determined in blood samples taken from the inferior vena cava 24 h after the reperfusion were measured; TUNEL was used to observe the apoptosis of renal tubular epithelial cells; immunohistochemistry was performed to evaluate the expressions of Bax and activated caspase-3; Western blotting was used to determine the expression changes in apoptotic proteins Fas and Bcl-2. Compared with the I/R group, Scr and BUN of the NGAL group were 63.400 ± 11.908 µM and 14.840 ± 2.868 mM, respectively. The number of apoptotic tubular epithelial cells was reduced (7.800 ± 1.924 vs 15.400 ± 3.049); the expression of
renal tissue Fas mRNA of the NGAL group was decreased (2.34 ± 0.51 vs 6.84 ± 2.34); the expression of the Bax protein was lower (7.440 ± 1.640 vs 15.456 ± 1.955%); the expression of the CC3 protein was decreased (3.171 ± 0.321 vs 7.291 ± 1.059%), while the expression of the Bcl-2 protein increased (6.91 ± 1.64 vs 5.30 ± 1.48), P < 0.05. NGAL had a protective effect towards the renal tubular epithelial cells in I/R, and the effect might have been associated with the reduction in apoptosis and the altered expression of apoptotic proteins, which would thereby reduce tissue damage and protect the kidney.

Key words: NGAL; Tubular epithelial cells; Ischemia-reperfusion; Apoptosis; Apoptotic protein