Characterization and expression analysis of somatic embryogenesis receptor-like kinase genes from *Phalaenopsis*

Y.W. Huang¹, Y.J. Tsai² and F.C. Chen¹²

¹Graduate Institute of Plant Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
²Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan

Corresponding author: F.C. Chen
E-mail: fchen@mail.npust.edu.tw

Received October 21, 2013
Accepted January 13, 2014
Published December 18, 2014
DOI http://dx.doi.org/10.4238/2014.December.18.11

ABSTRACT. Somatic embryogenesis receptor-like kinase (SERK) genes have been found to be involved in the somatic embryogenesis of several plant species. We identified and characterized 5 *PhSERK* genes in the *Phalaenopsis* orchid. The amino acid sequences of PhSERKs and other SERK proteins are highly conserved, with the highest homology observed in the leucine-rich repeat-receptor-like kinase domain. All 5 *PhSERKs* were expressed in all *Phalaenopsis* organs examined (root, leaf, shoot apical meristem, and flower), with the strongest expression, particularly for *PhSERK1* and 3, in the shoot apical meristem of mature plants. Expression of all PhSERKs was downregulated during early floral bud development and was upregulated gradually until the semi-open flower stage was reached. All 5 *PhSERKs* were expressed during both seed germination and protocorm-like-body (PLB) development. In germinated seeds, quantitative real-time PCR revealed upregulation of all *PhSERKs* except *PhSERK4* at 1 week and downregulation after 4 weeks. The 5 *PhSERKs* were differentially expressed in the early stage
of PLB development and maintained substantial levels during PLB formation, with PhSERK1 and 5 upregulated 1 week after culture and PhSERK2, 3, and 4 downregulated over this period. Because physical wounding of PLB stimulates secondary PLB formation, the PhSERK5 expression peak at week 3 coincided with visible and fully developed secondary PLBs. PhSERK5 may be important in PLB induction and subsequent development. Our PhSERK expression analysis revealed that these genes have a broad role during orchid plant development.

Key words: *Phalaenopsis*; Leucine-rich repeat-receptor-like kinases; SERK; Protocorm-like body