

Molecular cloning and expression analysis of female sterile homeotic gene (*fsh*) in the oriental river prawn *Macrobrachium nipponense*

W.Y. Zhang^{1,2}, S.F. Jiang², Y.W. Xiong², H.T. Fu^{1,2}, H. Qiao², S.M. Sun², Y.S. Gong² and S.B. Jin²

¹Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China ²Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China

Corresponding author: H.T. Fu E-mail: fuht@ffrc.cn

Genet. Mol. Res. 14 (2): 4318-4330 (2015) Received May 6, 2014 Accepted October 6, 2014 Published April 30, 2015 DOI http://dx.doi.org/10.4238/2015.April.30.4

ABSTRACT. The gene *female sterile homeotic (fsh)* plays crucial roles in molecular function, including protein kinase activity and DNA binding, which are involved in biological processes such as terminal region determination and negative regulation of DNA-dependent transcription. Although *fsh* has been found in *Drosophila melanogaster*, little is known regarding its expression in crustaceans. In this study, a *fsh* gene homologue, designated as *Mnfsh*, was cloned and characterized from the testis of the oriental river prawn, *Macrobrachium nipponense*, by using EST analysis and the RACE approach for the first time. The full-length cDNA of *Mnfsh* was 2029 bp, consisting of a 5' UTR of 361 bp, a 3' UTR of 216 bp, and an ORF of 1452 bp encoding 484 amino acids. qRT-PCR analysis showed that the *Mnfsh* gene was expressed in the testis, ovary, muscle, heart, eyestalk, and abdominal ganglion, with

Genetics and Molecular Research 14 (2): 4318-4330 (2015)

the highest level of expression in the ovary and the lowest in the heart. qRT-PCR analyses showed that the expression levels of *Mnfsh* mRNA both significantly increased in the zoea stage, the VII larvae, and 1st day post-larvae after metamorphosis. In conclusion, the results of the present study indicate that *Mnfsh* is an arthropod *fsh* homologue and probably also plays important roles in embryogenesis, organogenesis, and morphological differentiation of *M. nipponense*.

Key words: Female sterile homeotic (*fsh*); *Macrobrachium nipponense*; Gene cloning; Gene expression

Genetics and Molecular Research 14 (2): 4318-4330 (2015)