Effect of *Fimbristylis ovata* on receptor for advanced glycation end-products, proinflammatory cytokines, and cell adhesion molecule level and gene expression in U937 and bEnd.3 cell lines

S. Sukjamnong and R. Santiyanont

Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand

Corresponding author: R. Santiyanont
E-mail: rachana.s@chula.ac.th

Received May 29, 2014
Accepted October 17, 2014
Published April 27, 2015
DOI http://dx.doi.org/10.4238/2015.April.27.13

ABSTRACT. *Fimbristylis ovata* has been long used as a traditional medicine for chronic inflammatory diseases; however, there are no data regarding its anti-inflammatory properties. In this study, we investigated the effects of *F. ovata* extracts on the secretion of pro-inflammatory cytokines, cell adhesion molecule, and receptor for advanced glycation end-products (RAGE) in lipopolysaccharide-stimulated cells. *F. ovata* was extracted using the maceration method with 3 different solvents: ethanol, methanol, and water. The effect of *F. ovata* extracts on cell viability was evaluated using the MTT assay. Pro-inflammatory cytokines and cell adhesion molecules were investigated by reverse transcription-polymerase chain reaction and an enzyme-linked immunosorbent assay. Upon incubation with *F. ovata* extracts up to 100 μg/mL, cell viability was more than 80%. *F. ovata* extracts could inhibit interleukin-6 level and gene expression as well as the RAGE gene in the
monocytic cell line U937. Moreover, the results showed that vascular cell adhesion molecule 1 secretion and gene expression were decreased when lipopolysaccharide-activated brain endothelial cells (bEnd.3) were treated with *F. ovata* extracts. Therefore, the anti-inflammatory activity of *F. ovata* extracts may result from their inhibitory actions via the RAGE signaling pathway.

Key words: bEnd.3; Cell adhesion molecule; *Fimbristylis ovata*; U937; Proinflammatory cytokines; Random activation of gene expression