Molecular cloning and bioinformatic analysis of the *Streptococcus agalactiae* neuA gene isolated from tilapia

E.L. Wang1, K.Y. Wang1,2, D.F. Chen1,3, Y. Geng1,2, L.Y. Huang1, J. Wang1 and Y. He1

1Department of Basic Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
2Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya’an, Sichuan, China
3Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan, China

Corresponding author: K.Y. Wang
E-mail: kywangsicau@126.com

Received August 26, 2014
Accepted January 12, 2015
Published June 1, 2015
DOI http://dx.doi.org/10.4238/2015.June.1.18

ABSTRACT. Cytidine monophosphate (CMP) N-acetylneuraminic acid (NeuNAc) synthetase, which is encoded by the *neuA* gene, can catalyze the activation of sialic acid with CMP, and plays an important role in *Streptococcus agalactiae* infection pathogenesis. To study the structure and function of the *S. agalactiae* *neuA* gene, we isolated it from diseased tilapia, amplified it using polymerase chain reaction (PCR) with specific primers, and cloned it into a pMD19-T vector. The recombinant plasmid was confirmed by PCR and restriction enzyme digestion, and identified by sequencing. Molecular characterization analyses of the *neuA* nucleotide amino acid sequence were performed using bioinformatic tools and an online server. The results showed that the *neuA* nucleotide sequence contained a complete coding region, which comprised 1242 bp, encoding 413 amino acids (aa). The aa sequence was highly conserved and contained a Glyco_transf_GTA_type superfamily and an SGNH_hydrolase superfam-
ily conserved domain, which are related to sialic acid activation catalysis. The NeuA protein possessed many important sites related to post-translational modification, including 28 potential phosphorylation sites and 2 potential N-glycosylation sites, had no signal peptides or transmembrane regions, and was predicted to reside in the cytoplasm. Moreover, the protein had some B-cell epitopes, which suggests its potential in development of a vaccine against *S. agalactiae* infection. The codon usage frequency of *neuA* differed greatly in *Escherichia coli* and *Homo sapiens* genes, and *neuA* may be more efficiently expressed in eukaryotes (yeast). *S. agalactiae neuA* from tilapia maintains high structural homology and sequence identity with CMP-NeuNAc synthetases from other bacteria.

Keywords: Cloning; Bioinformatic analyses; *Streptococcus agalactiae*; *neuA* gene; NeuA amino acid sequences