Synergistic effect of BMP9 and TGF-β in the proliferation and differentiation of osteoblasts

X.L. Li¹, Y.B. Liu², E.G. Ma³, W.X. Shen⁴, H. Li⁵ and Y.N. Zhang¹

¹The Cadre Ward, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
²Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
³Department of Urinary Surgery, Harbin First Hospital, Harbin, China
⁴Medical Oncology of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
⁵The Professional Judicial Police College of Heilongjiang, Health Clinic, Harbin, China

Corresponding author: Y.N. Zhang
E-mail: lixinglu3@126.com

Received July 17, 2014
Accepted January 29, 2015
Published July 13, 2015
DOI http://dx.doi.org/10.4238/2015.July.13.4

ABSTRACT. We investigated the synergistic effect of bone morphogenetic protein 9 (BMP9) and transforming growth factor (TGF)-β in the transformation of mesenchymal stem cells into osteoblasts. We evaluated the effect of BMP9 and TGF-β on the induction of osteoblast formation. Mitogen-activated protein kinase (MAPK) pathway-related proteins such as p38, extracellular receptor kinase 1/2, and c-Jun N-terminal kinase (JNK) were analyzed. The interactions between TGF-Smad and BMP-MAPK were also studied. BMP9 alone induced the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and enhanced phosphorylation of p38, extracellular receptor kinase 1/2, and JNK. TGF-β alone failed to induce transformation, but could increase the effect of
BMP9. In this process the activation of Smad resulted in activation of the JNK pathway in the MAPK pathway. BMP9 induced osteogenesis of MSC differentiation through the MAPK pathway, while TGF-β contributed to BMP9 enhancement through the Smad-JNK pathway.

Key words: Bone morphogenetic protein 9; Cell differentiation; Mesenchymal stem cells; Mitogen activated protein kinase; Signal transduction pathway