Inhibitory effects of a dendritic cell vaccine loaded with radiation-induced apoptotic tumor cells on tumor cell antigens in mouse bladder cancer

X.F. Xie¹, Q. Ding², J.G. Hou² and G. Chen¹

¹Department of Urology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
²Department of Urology Research Institute, Huashan Hospital Affiliated to Fudan University, Shanghai, China

Corresponding authors: G. Chen / J.G. Hou
E-mail: chgan305@163.com / hou_jiangang@126.com

Received November 12, 2014
Accepted January 26, 2015
Published July 3, 2015
DOI http://dx.doi.org/10.4238/2015.July.3.30

ABSTRACT. Herein, the preparation of a dendritic cell (DC) vaccine with radiation-induced apoptotic tumor cells and its immunological effects on bladder cancer in C57BL/6 mice was investigated. We used radiation to obtain a MB49 cell antigen that was sensitive to bone marrow-derived DCs to prepare a DC vaccine. An animal model of tumor-bearing mice was established with the MB49 mouse bladder cancer cell line. Animals were randomly allocated to an experimental group or control group. DC vaccine or phosphate-buffered saline was given 7 days before inoculation with tumor cells. Each group consisted of 2 subgroups in which tumor volume and the survival of tumor-bearing mice were recorded. Tumor volumes and average tumor masses of mice administered DC vaccine loaded with radiation-induced apoptotic cells were significantly lower than those in the control group (P < 0.01).
Survival in the experimental group was also longer than that in the control group, and 2 mice survived without tumor formation. In the DC vaccine group, 2 mice were alive without tumor growth after 30 days, and no tumor was observed at 30 days after subcutaneous inoculation of MB49 cells. The DC vaccine loaded with radiation-induced apoptotic tumor cells had an anti-tumor effect and was associated with increased survival in a bladder cancer model in mice.

Key words: Dendritic cells; Bladder tumor; Dendritic cell vaccine; MB49 cells