Protective effect of penehyclidine hydrochloride on lipopolysaccharide-induced acute kidney injury in rat

H.J. Cao1,2, D.M. Yu2, T.Z. Zhang2, J. Zhou2, K.Y. Chen2, J. Ge3 and L. Pei1

1Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
2Department of Anesthesiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning Province, China
3Department of Gynecology and Obstetrics, The General Hospital of Shenyang Military Region, Shenyang, Liaoning Province, China

Corresponding author: L. Pei
E-mail: lingpei49@vip.sina.com

Received January 8, 2015
Accepted April 17, 2015
Published August 10, 2015
DOI http://dx.doi.org/10.4238/2015.August.10.14

ABSTRACT. We aimed to observe the effect of penehyclidine hydrochloride (PHC) on lipopolysaccharide (LPS)-induced acute kidney injury in rats and expression of tight junction proteins ZO-1 and occludin. Adult male Sprague-Dawley (SD) rats were divided randomly (N = 10) into control group (C), LPS group (LPS), low-dose PHC group (L-PHC), and high-dose PHC group (H-PHC). All rats, except C group, received a vena caudalis injection of 5.0 mg/kg LPS; after 30 min, rats in L-PHC and H-PHC groups received a vena caudalis injection of 0.3 and 0.9 mg/kg PHC. After 24 h, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, serum creatinine (Scr), and blood urea nitrogen (BUN) were...
detected. Histopathological changes and expression of ZO-1 and occludin were observed in renal tissues. Versus levels of TNF-α (38.5 ± 9.0), IL-1β (46.3 ± 12.7), Scr (37.2 ± 9.3), and BUN (6.5 ± 1.1) in control group, those in LPS group, TNF-α (159.0 ± 21.3), IL-1β (130.8 ± 18.7), Scr (98.5 ± 18.2), and BUN (12.8 ± 1.8), increased obviously (P < 0.05), with significantly structural changes and decreases of ZO-1 and occludin. However, TNF-α (111.3 ± 11.6), IL-1β (78.4 ± 14.3), Scr (51.3 ± 12.5), BUN (8.1 ± 1.2) in H-PHC group, and TNF-α (120.8 ± 14.3), IL-1β (92.5 ± 19.0), Scr (56.7 ± 14.7), BUN (9.7 ± 1.6) in L-PHC group were obviously decreased (P < 0.05). PHC has protective effects on acute kidney injury in sepsis, including abatement of renal tissue inflammation and functional improvement, potentially by upregulating ZO-1 and occludin.

Key words: Penehyclidine hydrochloride; Acute kidney injury; Lipopolysaccharide