Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma

Y.T. Zou, J.Y. Gao, H.L. Wang, Y. Wang, H. Wang and P.L. Li

Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province, China

Corresponding author: P.L. Li
E-mail: lpeiling2@126.com

Received March 11, 2015
Accepted June 12, 2015
Published July 31, 2015
DOI http://dx.doi.org/10.4238/2015.July.31.25

ABSTRACT. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-23 nt long) that can target genes for either degradation of mRNA or inhibition of translation. miRNAs have not been comprehensively studied in human epithelial ovarian carcinoma (EOC). MicroRNA-630 (miR-630) has been frequently observed to be aberrantly expressed in various types of tumors. The present study explored the functions of miR-630 in the proliferation, apoptosis, chemosensitivity, and invasion of EOC. Using real-time polymerase chain reaction, we detected the miR-630 expression in cancerous, benign, and normal human ovarian tissues. Then, we evaluated the role of miR-630 in cell proliferation, chemosensitivity, apoptosis, and invasion by using the Cell Counting Kit-8, Annexin-V/FITC, and transwell assay on A2780 and SKOV3 cells. Western blotting was performed for analyzing the phosphatase and tensin homolog gene (PTEN) protein expression.
The miR-630 expression level was higher in ovarian cancerous tissues than in benign and normal ovarian tissues. Decreased expression of miR-630 suppressed EOC cells’ proliferation, migration, and invasion as well as significantly enhanced cell apoptosis and chemosensitivity to cisplatin. Furthermore, PTEN expression was increased in A2780 cells transfected by miR-630 inhibitor in comparison with inhibitor-negative control-transfected cells. In conclusion, downregulation of miR-630 dramatically increased apoptotic cell death chemosensitivity to cisplatin and decreased the proliferation, invasion, and migration of EOC cells. MiR-630 may thus play an important role in the biological behaviors of EOC cells through negative control of the PTEN expression.

Key words: MicroRNA-630; Proliferation; Invasion; Chemosensitivity; Phosphatase and tensin homolog; Epithelial ovarian cancer