EDA mutation as a cause of hypohidrotic ectodermal dysplasia: a case report and review of the literature

S.X. Huang¹, J.L. Liang², W.G. Sui³, H. Lin³, W. Xue³, J.J. Chen³, Y. Zhang³, W.W. Gong³, Y. Dai⁴ and M.L. Ou³

¹Medical Center of Stomatology of the Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
²BGI Shenzhen, Shenzhen, China
³Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, China
⁴Clinical Medical Research Center of the Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China

Corresponding authors: Y. Dai / M.L. Ou
E-mail: daiyong2222@gmail.com / minglinou@163.com

Received April 23, 2015
Accepted July 31, 2015
Published August 28, 2015
DOI http://dx.doi.org/10.4238/2015.August.28.21

ABSTRACT. Ectodermal dysplasia (ED) represents a collection of rare disorders that result from a failure of development of the tissues derived from the embryonic ectoderm. ED is often associated with hair, teeth, and skin abnormalities, which are serious conditions affecting the quality of life of the patient. To date, a large number of genes have been found to be associated with this syndrome. Here, we report a patient with hypohidrotic ED (HED) without family history. We identified that this patient’s disorder arises from an X-linked HED with a mutation in the EDA gene (G299D) found by whole-exome sequencing. In addition, in this paper we summarize the disease-causing mutations based on current literature. Overall, recent clinical and genetic research involving patients with HED have uncovered a large number of pathogenic mutations in EDA, which might contribute to
a full understanding of the function of *EDA* and the underlying mechanisms of HED caused by *EDA* mutations.

Key words: Hypohidrotic ectodermal dysplasias; Whole exome sequencing; *EDA*