Interleukin-10 polymorphisms and nasopharyngeal carcinoma risk: a meta-analysis

¹Department of Radiology, The First People’s Hospital of Shunde, Foshan, Guangdong, China
²Ear Nose and Throat Diagnosis and Treatment Center, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, Xinjiang, China
³Department of Urology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
⁴Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
⁵Department of Stomatology, The Twelfth People’s Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
⁶Department of Ultrasound, The First People’s Hospital of Shunde, Foshan, Guangdong, China
⁷Department of Stomatology, The Twelfth People’s Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
⁸Department of Biomedicine, Guangdong Medical College, Zhanjiang, Guangdong, China

*These authors contributed equally to this study.
Corresponding authors: C.-D. Liu / L. Tang
E-mail: ldliucundong@163.com / ttangliang@163.com

Received August 24, 2015
Accepted October 19, 2015
Published December 29, 2018
DOI http://dx.doi.org/10.4238/2015.December.29.1

ABSTRACT. It has been reported that interleukin-10 (IL-10) promoter genes (1082 A/G, 819 T/C, 592 A/C) are associated with nasopharyngeal
carcinoma (NPC). However, the results remain controversial and ambiguous. To resolve inconsistencies in published data, we performed a meta-analysis to ascertain the association between IL-10 polymorphisms and NPC risk. Two case-control studies and two cohort studies were quantitatively analyzed to evaluate IL-10 promoter gene polymorphisms and NPC risk. Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated for each genetic model and allelic comparison. A random-effect model or a fixed-effect model was used to calculate the overall combined risk estimates. Overall, the variant genotypes (AA and AG) of the IL-10-1082 A/G polymorphism were associated with elevated risk of NPC compared with the GG homozygote (AG vs GG: OR = 1.77; 95%CI = 1.39-2.26; AG + GG vs AA: OR = 1.78; 95%CI = 1.42-2.22); no significant associations were observed in allelic contrast and the recessive model. Strong positive association was seen in the cohort studies but not in the case-control studies. No statistically significant association was detected between IL-10-819 T/C and IL-10-592 A/C polymorphisms and NPC. Additionally, publication bias was not found. Based on the current evidence, this meta-analysis suggests that IL-1082 A/G polymorphism may increase the risk of NPC, but IL-10-819 T/C and IL-10-592 A/C polymorphisms do not. Further multicenter studies that are better controlled are required to confirm these findings.

Key words: Interleukin-10; Meta-analysis; Nasopharyngeal carcinoma; Polymorphism; Promoter genes.