Dihydromyricetin induces cell apoptosis via a p53-related pathway in AGS human gastric cancer cells

F.J. Ji¹, X.F. Tian¹, X.W. Liu², L.B. Fu³, Y.Y. Wu¹, X.D. Fang¹ and H.Y. Jin¹

¹Department of General Surgery, The China Japan Friendship Hospital of Jilin University, Changchun, China
²Department of General Surgery, Jilin Central Hospital, Jilin, China
³Department of General Surgery, People’s Hospital of Panan County, Zhejiang, China

Corresponding author: H.Y. Jin
E-mail: jinhongyong119@sina.com

Received August 26, 2015
Accepted October 2, 2015
Published December 1, 2015
DOI http://dx.doi.org/10.4238/2015.December.1.7

ABSTRACT. The aim of the present study was to determine the anti-proliferative and pro-apoptotic effects of dihydromyricetin (DHM) on the AGS human gastric cancer cells and their underlying mechanisms. The effects of DHM on AGS cells were evaluated by using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, and Annexin V/propidium iodide (PI) double-staining assays. The underlying mechanisms were determined by using quantitative real-time polymerase chain reaction. The results demonstrated that DHM significantly (P < 0.05) inhibited AGS cell proliferation and induced cell cytotoxicity in a dose- and time-dependent manner. Additionally, Annexin V/PI double-staining assay showed that DHM promoted cell apoptosis in both, early and late stages. Furthermore, DHM also regulated the expression of apoptotic genes such as p53 and B-cell lymphoma-2 (bcl-2) in a dose- and time-dependent manner. In conclusion, this is the first report demonstrating the anticancer and pro-apop-
tosis effects of DHM on AGS human gastric cancer cells. The results strongly suggest that DHM may be a potential therapeutic candidate for the treatment of gastric cancer.

Key words: Dihydromyricetin; Gastric cancer; Cytotoxicity; Apoptosis; p53