Matrix metalloproteinase-3 gene polymorphism and its mRNA expression in rheumatoid arthritis

M.J. Ma1, H.C. Liu2, X.Q. Qu3 and J.L. Wang3

1Department of Surgery, Victory Hospital of China Petrochemical Group, Victory Petroleum Administration, Dongying, Shandong, China
2Department of Orthopedics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
3Orthopaedic Institute of PLA, 89th Hospital, Weifang, Shandong, China

Corresponding author: J.L. Wang
E-mail: linyexinx@163.com

ABSTRACT. Matrix metalloproteinase-3 (MMP-3) can mediate the occurrence and development of rheumatoid arthritis (RA). The MMP3 promoter gene exhibits polymorphism with 5A/6A alleles. We investigated the correlation between the expression of MMP3 gene polymorphism and RA to provide an objective basis for prognosis evaluation. We enrolled 80 RA patients and 80 healthy subjects. Enzyme-linked immunosorbent assay was used to detect MMP-3 serum levels, pyrosequencing was used to test MMP3 genotypes, and real-time polymerase chain reaction determined MMP-3 mRNA expression levels. Compared with the control group, the serum level of MMP-3 in RA patients increased significantly (P < 0.05). The serum level of MMP-3 in RA patients in the active period was markedly elevated compared with that in patients in the relief period (P < 0.05). There was no statistically significant difference between MMP3 gene frequency distribution in the RA patients and the control group (P > 0.05). MMP-
3 mRNA expression in the RA patients was markedly upregulated compared with the control group (P < 0.05), while RA patients in the active period exhibited higher MMP-3 mRNA expression (P < 0.05). There was no significant difference in MMP-3 mRNA expression between RA patients with or without the 6A/6A genotype (P > 0.05). RA patients exhibited higher serum MMP-3 levels and mRNA expression, which were more obvious in the active period. MMP-3 is associated with the occurrence and development of RA bone erosion, and its serum level and mRNA expression can be treated as important predictors of joint damage.

Key words: Rheumatoid arthritis; Matrix metalloproteinase-3; Genetic polymorphism; mRNA expression