Analysis of HLA-DQB1 allele polymorphisms in Uyghur women with cervical cancer

L. Han1,2, S. Husaiyin1, L. Wang1, K.D. Wusainahong1, X. Fu3 and M. Niyazi1

1Department of Gynecology, Xinjiang Uyghur Autonomous Region People’s Hospital, Urumqi, China
2Postgraduate College of Xinjiang Medical University, Urumqi, China
3Department of Gynecology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China

Corresponding authors: X. Fu / M. Niyazi
E-mail: xjfx2004@sina.com / mynr68@126.com

Received June 23, 2015
Accepted September 30, 2015
Published December 16, 2015
DOI http://dx.doi.org/10.4238/2015.December.16.25

ABSTRACT. In Uyghur women, mortality rates from cervical cancer are amongst the highest in the nation, and genetic susceptibility probably plays a role in the pathogenesis of the disease. We investigated the correlation between polymorphisms of the HLA-DQB1 allele and cervical cancer in Xinjiang Uyghur women. Cervix tissue samples from 80 cases of cervical cancer and 80 cases of cervicitis were genotyped using polymerase chain reaction-sequence-based typing (PCR-SBT) for HLA-DQB1. Two hundred and ninety-six alleles were identified among the 160 cases. One hundred and thirty-six alleles were heterozygous and 24 were homozygous. Using frequency calculations and statistical analysis, we found that HLA-DQB1*0325 (OR: 10.60, 1.341-83.81) and HLA-DQB1*0332 (OR: 12.59, 2.909-54.526) were more frequently identified in the cervical cancer group compared with the cervicitis group (P < 0.05). However, HLA-DQB1*0317 (OR: 0.49, 0.304-0.798) and HLA-DQB1*040302 (OR: 0.40, 0.243-0.658) were present less frequently in the cervical cancer group (P < 0.05). The frequency of the HLA-DQB1 genotype in Uyghur was different from that reported previously in other areas. HLA-DQB1*0325 and HLA-DQB1*0332 probably act as cervical cancer susceptibility genes in Uyghur women from Xinjiang. In contrast, HLA-
DQB1*0317 and HLA-DQB1*040302 may be protective genes.

Key words: Cervical cancer; HLA-DQB1; PCR-SBT; Predisposing genes