Effect of ethylene treatment on phytochemical and ethylene-related gene expression during ripening in strawberry fruit

Fragaria x ananassa cv. Camino Real

P.Z. Lopes¹, I.M. Fornazzari¹, A.T. Almeida², C.W. Galvão³, R.M. Etto⁴, J. Inaba⁴ and R.A. Ayub¹

¹Laboratório de Biotecnologia Vegetal, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil
²Departamento deBioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
³Laboratório de Biologia Molecular Microbiana, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil
⁴Departamento de Química, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil

Corresponding author: R.A. Ayub
E-mail: rayub@uepg.br

Received April 30, 2015
Accepted September 1, 2015
Published December 7, 2015
DOI http://dx.doi.org/10.4238/2015.Dece 7.23

ABSTRACT. In contrast to climacteric fruits, in which ethylene is known to be pivotal, the regulation of ripening in non-climacteric fruits is not well understood. The strawberry is a typical example of a non-climacteric fruit, which has been used as a model system of these types of fruit. In this study, the effect of exogenous ethephon on the expression of ethylene biosynthesis and signaling genes, FaERF2 and FaACO1, was analyzed in the Fragaria ananassa cultivar Camino Real by quantitative real-time polymerase chain reaction, and the physicochemical and phytochemical
characteristics of fruits were evaluated in field trials and postharvest tests. Transcript accumulation was influenced by exogenous treatment with ethephon, which affected the pattern of gene expression during different stages of growth and fruit development, with the highest expression occurring during postharvest tests. In addition, ethephon significantly influenced the phytochemical profile of sugars, anthocyanins, phenolic compounds, and vitamin C contents both in the field- and postharvest-treated fruits at different stages. These results indicate that ethylene regulates the phenylpropanoid maturation pathway in strawberry fruit.

Key words: Strawberry; Non-climacteric fruit; Ethylene signaling; RT-qPCR; Ripening genes