Molecular cloning and expression analysis of a pearl oyster (*Pinctada martensii*) heat shock protein 90 (*HSP90*)

H.Y. Liang, Z.X. Wang, Q.N. Lei, R.L. Huang, Y.W. Deng, Q.H. Wang, Y. Jiao and X.D. Du

Fisheries College, Guangdong Ocean University, Zhanjiang, China

Corresponding author: X.D. Du
E-mail: zjdxiaodong@163.com

Received August 16, 2015
Accepted October 4, 2015
Published December 28, 2015
DOI http://dx.doi.org/10.4238/2015.December.28.27

ABSTRACT. Heat shock protein 90 (HSP90) is an important molecular chaperone required for proper folding of cellular proteins, and thus, it plays an essential role in protecting cells from damage during stress. In this study, an HSP90 cDNA designated *PmHSP90* was cloned from the mantle tissue of the pearl oyster *Pinctada martensii* using reverse transcription polymerase chain reaction (RT-PCR) coupled with the rapid amplification of cDNA ends (RACE) approach. *PmHSP90* cDNA was 2584 bp in length, including an open reading frame of 2160 bp, which encodes a polypeptide of 719 amino acid residues, with predicted molecular mass and isoelectric point of 83.0 kDa and 4.87, respectively. Multiple-sequence alignment indicated that HSP90 is highly conserved among species, and *PmHSP90* showed 89% sequence identity to *Crassostrea gigas* HSP90. Five conserved amino acid blocks defined as HSP90 protein family signatures were also observed in *PmHSP90*, indicating that *PmHSP90* may be a cytosolic member of the HSP90 family. Expression levels of *PmHSP90* were detected in various tissues of *P. martensii* and in hemocytes under three different stress conditions using quantitative real-time PCR (qPCR). The results demonstrate that *PmHSP90* mRNA is constitutively expressed in
all the tested tissues and may be involved in the immune response against thermal stress, lipopolysaccharide stimulation, and nucleus insertion operations. Studies on PmHSP90 are a valuable source to further explore the immune system in pearl oysters during the production of pearls, and may enhance our knowledge of molluscan innate immunity.

Key words: Heat shock protein 90 (HSP90); Pinctada martensii; Cloning; Expression; Stress