Application of the ERK signaling pathway inhibitor PD98059 in long-term in vivo experiments

X.Y. Chen¹, H.Z. Cai¹, X.Y. Wang², Q.Y. Chen³, H. Yang², Y.J. Chen² and Y.P. Tang²

¹The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China
²Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China

Corresponding author: X.Y. Chen
E-mail: chenxinyuchen@163.com

Received June 22, 2015
Accepted September 11, 2015
Published December 23, 2015
DOI http://dx.doi.org/10.4238/2015.December.23.20

ABSTRACT. The aim of this study was to explore methods by which the ERK signaling pathway inhibitor PD98059 (PD) could be used in long-term in vivo experiments. Forty healthy New Zealand rabbits were randomly divided into blank control, model control, PD low-dose, PD high-dose, PD blank, dimethyl sulfoxide (DMSO) control, DMSO blank, and positive control groups. The corresponding treatments were administered to each experimental group over the course of four weeks, after which, total ERK1/2 and ERK5 protein levels, protein phosphorylation, and gene expression were measured in myocardial tissues. Treatment of rabbits with Adriamycin (doxorubicin) resulted in the significant overall differences in ERK1/2 and ERK5 phosphorylation (P < 0.05). Compared with the model control group, changes in phosphorylated ERK1/2 and phosphorylated ERK5 were lowest in the PD high-dose group (P < 0.05). No significant differences in total protein and mRNA levels of myocardial ERK1/2 and ERK5 were detected between the groups after four weeks (P > 0.05). Continuous intravenous injection of PD98059 significantly reduced phosphorylation of ERK1/2.
and that of ERK5. In conclusion, Adriamycin-induced myocardopathy and abnormal ERK signaling might constitute a valuable model for use in long-term experiments. These methods may provide a theoretical basis for related in vivo studies of long duration.

Key words: PD98059; ERK pathway; Signaling pathways;
In vivo experiments