Analysis of \textit{POU1F1} gene \textit{Ddel} polymorphism in Chinese goats

M.J. Li1,2, C.M. Zhang3, X.Y. Lan1, X.T. Fang3, C.Z. Lei1 and H. Chen1

1College of Animal Science and Technology, Northwest A\&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
2Key Laboratory of Crops with High Quality and Efficient Cultivation and Security Control, Yunnan Higher Education Institutions, Honghe University, Mengzi, Yunnan, China
3Institute of Cellular and Molecular Biology, Xuzhou Normal University, Xuzhou, Jiangsu, China

Corresponding author: H. Chen
E-mail: mijieli@126.com / chenhong1212@263.net

Genet. Mol. Res. 15 (1): gmr.15017747
Received September 29, 2015
Accepted December 3, 2015
Published March 11, 2016
DOI http://dx.doi.org/10.4238/gmr.15017747

ABSTRACT. As a member of the POU-domain family, the POU1F1 is a positive regulator for growth hormone, prolactin and thyroid-stimulating hormone \(\beta \), by binding to target DNA promoters as a dimer in mammals. This study described the polymorphisms at the goat \textit{POU1F1-Ddel} locus and analyzed the distribution of alleles in 15 indigenous Chinese goat breeds. The PCR-RFLP analysis showed a predominance of the \(\text{D}_1\text{D}_1 \) genotype and the \(\text{D}_1 \) allele, with average frequencies of 0.550 and 0.790, respectively, irrespective of goat utility type. The \(\text{D}_1\text{D}_2 \) genotype was the second most frequent, with a mean frequency of 0.371. The distributions of genotypic and allelic frequencies at this locus were found to be significantly different among populations based on a Chi square test \((P < 0.001)\), suggesting that the breed factor significantly affected the molecular genetic character of the \textit{POU1F1} gene. The genetic diversity analysis revealed that Chinese indigenous populations had a wide spectrum of genetic diversity at the goat \textit{POU1F1-Ddel} locus. However, an ANOVA analysis revealed no
significant differences in gene homozygosity, gene heterozygosity, effective allele numbers, or polymorphism information content among meat, dairy, and cashmere utility types ($P > 0.05$). This suggests that the goat utility types had no significant effect on the spectrum of genetic diversity.

Key words: Goat; \textit{POU1F1} gene; Polymorphism; PCR-RFLP