Association between dopamine D2 receptor gene polymorphisms and the risk of heroin dependence

N. Wang1*, J.B. Zhang1*, J. Zhao1, X.T. Cai1, Y.S. Zhu1,2 and S.B. Li1,2

1College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shannxi, China
2Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, Shannxi, China

*These authors contributed equally to this study.
Corresponding author: S.B. Li
E-mail: shengbinli_xjtu@126.com

Received May 10, 2016
Accepted July 11, 2016
Published November 3, 2016
DOI http://dx.doi.org/10.4238/gmr15048772

Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. Heroin dependence is a chronic relapsing brain disease. Researchers have reported that the dopamine D2 receptor (DRD2) is involved in the development of opiate dependence. To identify markers that contribute to the genetic susceptibility to heroin addiction, we examined the potential association between heroin dependence and six polymorphisms of the DRD2 gene using the MassARRAY system. Three hundred and thirty-four patients with heroin dependence and 299 healthy controls participated in the research. Compared with the healthy controls, heroin-dependent patients had a significantly lower frequency of the AA genotype of rs6275 (P = 0.038), and a significantly higher frequency of the C allele of rs1125394 (P = 0.030). Statistically significant differences were observed in the genotypic and allelic frequencies of rs17115583 (P = 0.005 and P = 0.001, respectively) and...
rs1079597 (P = 0.03 and P = 0.02, respectively). Haplotype analysis revealed that the T-G-A (block 1) haplotype of the DRD2 gene conferred a protective effect (P = 0.020). These findings point to a role for DRD2 polymorphism in heroin dependence in the Chinese Han population, and may be informative for future genetic or neurobiological studies on heroin dependence.

Key words: Heroin dependence; Dopamine D2 receptor; Single nucleotide polymorphism; Chinese Han population