Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from *Coffea canephora* seeds

G.C.V. Bard¹, U. Zottich², T.A.M. Souza¹, S.F.F. Ribeiro¹, G.B. Dias³, S. Pireda⁴, M. Da Cunha⁴, R. Rodrigues⁵, L.S. Pereira⁵, O.L.T. Machado⁶, A.O. Carvalho¹ and V.M. Gomes¹

¹Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
²Laboratório de Virulência Bacteriana/Setor de Patologia, Universidade Federal do Espirito Santo, Campos de Maruípe, Vitória, ES, Brasil
³Laboratório de Ecologia Funcional, Universidade Vila Velha, Vila Velha, ES, Brasil
⁴Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
⁵Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
⁶Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil

Corresponding author: V.M. Gomes
E-mail: valmguenf@gmail.com

Received June 7, 2016
Accepted September 12, 2016
Published October 24, 2016
DOI http://dx.doi.org/10.4238/gmr15048859

Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. Coffee, an agronomical crop of great economic
importance, is also among the most commonly traded commodities in worldwide markets. Antimicrobial peptides, which play a role in plant defense, have been identified and isolated particularly from seeds. We isolated and immunolocalized Cc-LTP2, a new lipid transfer protein (LTP) from Coffea canephora seeds. We report its antimicrobial activity against various phytopathogenic fungi of economic importance, and against the bacterium Xanthomonas euvesicatoria. Peptides from C. canephora seeds were initially extracted using acid buffer and subjected to ion-exchange and reverse-phase chromatographies. A purified peptide of approximately 9 kDa, which we named Cc-LTP2, was then subjected to amino acid sequencing. The analyses showed that it was similar to LTPs isolated from various plants. The tissue and subcellular localization of C. canephora LTPs indicated that they were located in cell walls and intracellular palisade parenchyma, mainly in large vacuoles. The results of immunohistochemistry and histochemistry superposed from C. canephora seed tissues showed that LTPs and lipid bodies are present in organelles, supporting the hypothesis that LTPs from seeds are involved in lipid mobilization during germination. Cc-LTP2 did inhibit the development of the phytopathogenic fungi Colletotrichum lindemuthianum, Colletotrichum gloeosporioides, Fusarium solani, Fusarium lateritium, and Colletotrichum sp, but did inhibit X. euvesicatoria. Cc-LTP2 also increased membrane permeability and induced endogenous production of reactive oxygen species in all the fungi tested.

Key words: Antimicrobial peptides; Phytopathogenic fungi; Chromatography; Membrane permeabilization; Reactive oxygen species