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ABSTRACT. Genome-Wide Selection (GWS) uses molecular 
markers to predict the genetic merit of animals and plants. Usually, a 
high density of molecular markers to predict this genetic merit is 
used. Thus, statistical methods need to deal with problems of high 
dimensionality, multicollinearity and computational efficiency. We 
examined a set of machine learning methods, in particular the tree-
based regression methods (Regression Tree, Bagging, Random Forest 
and Boosting) and evaluated them in relation to predictive ability and 
bias. Moreover, these methods were compared with the Bayesian 
Least Absolute Shrinkage and Selection Operator (BLASSO) 
method, which is routinely used in GWS. For this, we used 
information of 10 carcass traits in Piau x Commercial pigs. The tree-
based regression methods were superior to the BLASSO method, 
presenting shorter computational times to predict the genetic values 
of the analyses, especially, the Random Forest and Bagging methods. 
Furthermore, the predictive abilities of tree-based regression methods 
were competitive with BLASSO. In terms of bias, the BLASSO 
underestimated the predictions while tree-based regression methods 
overestimated the predictions. In addition, among the methods, the 
Random Forest was the one that obtained the bias value closest to 
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ideal for most of the traits, demonstrating the superiority of this 
method. 
 
Key words: Crop breeding; Genetic improvement; Tree-based regression 
methods 

INTRODUCTION 
 
The Genomic-Wide Selection (GWS), proposed by Meuwissen et al. (2001), 

consists in the use of molecular markers to predict the genetic merit of animals and 
plants using the subsequent selection of individuals. Among the advantages of GWS, 
the genetic gain per unit of time, low cost, high efficiency in selection of genetically 
superior individual  and reduction of generation  interval in the selection of best 
individuals are preeminent (Meuwissen et al., 2001; Goddard and Hayes, 2008). 

Many statistical methods have been proposed, tested and used to improve the 
prediction of genetic values. Among these methodologies there are those based on 
Bayesian inference (Meuwissen et al., 2001; Gianola, 2013), dimensional reduction 
(Azevedo et al., 2015a), nonlinear regression (González-Camacho et al., 2012) and tree-
based regression and its refinements, such as Bagging, Random Forest and Boosting 
(Ogutu et al., 2011; Ho et al., 2019). Tree-based regression methods are still little used 
in GWS, though they have useful features, such as easy interpretation, they deal with 
quality variables without the need to create dummy variables and can be used for both 
regression and classification (James et al., 2013). Moreover, this approach does not 
require assumptions concerning the distribution of model parameters and variable 
response. 

Tree-based methods are algorithms that partition the predictor space in 
subspaces based on some specifications. These subspaces are also divided until they 
reach an established stopping criterion. From this, the predicted value for a new 
individual is obtained by the average of trained individuals in the region in which the 
new individual belongs (James et al., 2013). 

González-Recio and Forni (2011) compared Boosting and Random Forest 
methods with other Bayesian methods (Bayes A and Bayesian LASSO - BLASSO) to 
predict categorical traits. They concluded that the best method might depend on the 
genetic architecture of the population and found higher prediction accuracy in the 
adjustment by Boosting and BLASSO and the best performance in the correct 
classification of individuals using Random Forest. Bayes A and Boosting methods had 
the best accuracy for hybrids. However, for quantitative traits in GWS, there are few 
studies using tree-based regressions. Therefore these methods should be analyzed with 
this group of variables, since most important agronomic traits are of this nature (Yang 
et al., 2010). 

We evaluated the methods used in tree-based regressions (Regression Tree, 
Bagging, Random Forest and Boosting) and compared them with the BLASSO method, 
which is the most widely used in GWS studies. For this, a set with 10 quantitative traits 
of economic importance in pigs were used. These methods were compared by 
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predictive ability, bias in prediction and computational time after the cross-validation 
procedure. 

MATERIAL AND METHODS 

Dataset 
 
The dataset used in this study come from the Pig Breeding Farm of the 

Department of Zootechnics of the Federal University of Viçosa, Viçosa, Minas Gerais, 
collected from November 1998 to July 2001. These records came from an F2 
population that consisted of 345 pigs originated from the crossing of two boars of the 
Brazilian Piau naturalized breed, with 18 females of the UFV strain, by the mating of 
commercial animals (Landrance x Larga White x Pietrain). DNA extraction was 
performed according to Peixoto et al. (2006). We used 237 SNPs markers that are 
distributed as follows on the Sus scrofa chromosomes: SSC1 (56), SSC4 (54), SSC7 
(59), SSC8 (31), SSC17 (25). 

Carcass traits are of great interest in the development of pig farming, seeking to 
increasingly meet the demands of the consumer market regarding lower fat deposition 
and higher yield and carcass length (Bertol et al., 2010). Thus, in this study, the 
following traits were considered: carcass yield (CY); backfat thickness (BFT); Midline 
backfat thickness immediately after the last rib (LR); backfat thickness on the shoulder 
region (SBT); backfat thickness after the last rib, 6.5 cm from the midline (ETO); 
midline backfat thickness between last and next to last but one lumbar vertebra (LL); 
midline lower backfat thickness above the last lumbar vertebra (L); carcass length by 
the Brazilian carcass classification method (MBCC); carcass length by the American 
carcass classification method (MLC); diameter of the longissimus dorsi muscle in the 
region of the last rib at 6.5 cm from the dorsolumbar line, from a transverse section in 
the carriage (PROLOM). 

In order to predict the genetic merit of unrelated individuals, the data used in the 
analyses were corrected for fixed parent effects. According to Resende et al. (2012) 
without this correction, molecular markers may be capturing only kinship between 
individuals, which could reduce the accuracy of validation in individuals from 
independent populations or from other generations. 

Blasso 
 
The basic linear model proposed by Meuwissen et al. (2001) to estimate genetic 

merit is given by: 
 

ݕ = ߤ1 + ܹ݉௔ + ݁                                               (Eq. 1) 
 

where ݕ is the phenotype vector,	ߤ is the general mean of the trait, ݉௔ is the additive 
genetic effects vector with incidence matrix of markers ܹ and ݁ is the residual vector. 
The Bayesian Least Absolute Shrinkage and Selection Operator (BLASSO) includes a 
common variance term for the genetic effects of markers and residual effects. In this 
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method, the effects of markers follow a double exponential distribution, as follows: 
	݉௜|ߣଶ~݈ܽ݌ݑܦ݌ݔܧ ቀ0, ఙ

ఒ
ቁ the additive genetic variance of each marker is given respectively 

by ߪ௠௜
ଶ = ߬௜ଶߪଶ with ݅ = 1, 2, … ,݉. Additive genomic values are estimated from 

expression:	 ොܽ = 	ܹ ෝ݉ . The complete conditional distributions a posteriori for the BLASSO 
parameters are presented in detail by de los Campos et al. (2009). In this work, 41,000 
iterations were used for MCMC (Markov chain Monte Carlo) algorithms, which 1,000 were 
burn-in to ensure chain heating and one in 10 iterations were selected (thin). Convergence 
analysis was performed using the criterion proposed by Raftery and Lewis (1992), using the 
Boa software package R (Smith, 2007). 

Regression Tree, Bagging, Random Forest and Boosting 
 
A Regression Tree is constructed by a process known as recursive binary division, 

which is an iterative procedure that divides training data into partitions or branches and then 
remains dividing each partition into smaller groups. Initially, the predictor ௝ܹ and the 
division point ݏ are selected. Its separates the predictor space into two regions {ܹ| ௝ܹ <  {ݏ
and {ܹ| ௝ܹ ≥  which leads to the largest possible reduction in the Residual Square Sum ,{ݏ	
(RSS). Thus, all predictors are considered ଵܹ, . . . , ௣ܹ and all possible split point values ݏ 
for each predictor, then the predictor and split point is chosen in a way that the resulting tree 
has the smallest RSS. Therefore, for any ݆ and ݏ, the regions are defined as ܴଵ(݆, (ݏ 	=
	{ܹ| ௝ܹ < ,݆)	ܴଶ	 and {ݏ (ݏ 	= {ܹ| ௝ܹ ≥  that minimize ݏ and we seek the value of ݆ and {ݏ
the equation: 

 
∑ ௜ݕ) − ොோభ)ଶݕ +௜:	௪೔∈ோభ(௝,௦) ∑ ௜ݕ) − ௪೔∈ோమ(௝,௦)	ොோమ)ଶ௜:ݕ                  (Eq. 2) 

 
where ݕොோభ is the average response for training observations in ܴଵ(݆,  ොோమ is theݕ and (ݏ
average response for training observations in ܴଶ(݆,  .(ݏ

This process continues until achieve a stopping criterion, for example, until any 
region contains no more than five observations. Once regions ܴଵ, . . . , ௃ܴ are created, the 
response is predicted for a given test set observation, using the average of the training 
observations in the region to which this test observation belongs. 

Bagging also known as Bootstrap Aggregation has been proposed to reduce the 
variance of the Regression Tree method (James et al., 2013). For this, using bootstrap 
sampling in the training population, B subsets are generated with replenishment of the 
available sampling, obtaining B models መ݂ଵ(⋅), … , መ݂஻(⋅)which will be used in the 
construction of B trees. According to James et al. (2013), predictions by this method are 
obtained by: 

 
	 መ݂௕௔௚(ݔ) = ଵ

஻
∑ መ݂௕∗(ݔ)஻
௕ୀଵ                                             (Eq. 3) 

 
where x is a recorded set of unused predictors in the training population, and መ݂௕∗(⋅) is the 
predictor function of the previously trained b-th tree. 

Each tree of this method has high variance and low bias because it is built deep 
(with many divisions) and not pruned (James et al., 2013). However, by averaging the 
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results obtained on B trees, the variance is reduced. Moreover, in practice, increasing B 
reduces the error without leading to overfitting, which is estimated by OOB (Out-of-Bag). 
That is, in bootstrap sampling, the remaining unsampled training population data (one third 
of each sample) is used as a test population to obtain the error. 

Random Forest, on the other hand, was proposed by Breiman (2001) and uses a set 
of bootstrap samples in the training population to build several trees, which one tree is built 
at each sampling. Each tree is constructed by randomly selecting a subset of predictors as 
candidates for region division. A variable in the validation population containing the x 
records for predictors is classified according to the mean of the B trees built, so that: 

 
መ݂௥௙஻ (ݔ) = ଵ

஻
∑ ஻(Ψୠ,ݔ)ܶ
௕ୀଵ                                            (Eq. 4) 

 
where ܶ(⋅) is the prediction function according to variable x and ߖ௕ , where ߖ௕ is a set of 
parameters that characterize tree b in terms of division variable, cutoff point in each region, 
and predicted values for the terminal regions. According to James et al. (2013), the main 
difference between Random Forest and Bagging is that the Random Forest considers a p 
number of variables (p <m) to predict the averages, in order to reduce the variance of the 
predictions obtained in the Regression Tree method. If Random Forest is built using p = m 
then it is equivalent to Bagging. 

In addition, Boosting, as described by James et al. (2013), uses regression trees 
adjusting the residual of an initial model. The residual is updated in each tree, that grows 
sequentially from the residual of the previous tree and, just like in Bagging, the   response 
variable of Boosting involves a combination of a large number of trees, so that መ݂(ݔ) =
∑ ߣ መ݂௕(ݔ)஻
௕ୀଵ . The function መ݂(⋅) refers to the final tree combined with the sequentially 

adjusted B trees and λ is the shirinkage parameter that controls the learning rate of the 
method. In addition, this method needs to be adjusted with a d number of divisions in each 
tree. This parameter controls the complexity of boosting and is known as depth. 

Cross validation, predictive ability and bias 
 
The methods were compared using a cross-validation study. This study is based on 

population division (345 observations) into 5 groups with 69 observations each. One of the 
groups was used as the validation population and the remaining groups as the training 
population. In the training population, the model parameters were estimated and in the 
validation population, predictive ability and bias values were obtained. All groups were 
used as the validation population and this provided a mean and, also, a standard error for the 
predictive ability and bias values. Predictive ability was calculated as Pearson's correlation 
between observed and predicted values. And, the bias was obtained from the linear 
regression coefficient between the observed value and the predicted value. In this measure, 
the target value is 1, so values less than 1 indicate that genetic values are being 
overestimated and values greater than 1 indicate that they are being underestimated. 

Computational Resources 
 

The analyses were implemented in R software (R Development Core Team, 
2018) using the packages presented in Table 1. 
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Table 1. R software packages and functions used in the analysis. 
 

Methodologies  Packages Functions 
BLASSO BGLR BGLR 
Regression Tree tree Tree 
Bagging randomForest randomForest 
Random Forest randomForest randomForest 
Boosting gbm Gbm 

RESULTS AND DISCUSSION 
 
The results of mean of the predictive ability and standard errors obtained in 

cross validation procedure to Regression Tree, Bagging, Random Forest, Boosting and 
BLASSO methods for each carcass trait are presented in Table 2. 

 
 

Table 2. Mean of predictive ability values (Pearson correlation) and standard errors in cross validation 
procedure of the BLASSO, Regression Tree, Bagging, Random Forest and Boosting methods for each 
carcass trait. 
 

Traits BLASSO Regression Tree Bagging Random Forest Boosting 
CY 0.16  ± 0.07 0.08  ± 0.05 0.07  ± 0.06 0.10  ± 0.06 0.06  ± 0.06 
MBCC 0.25  ± 0.05 0.10  ± 0.05 0.23  ± 0.02 0.25  ± 0.03 0.19  ± 0.03 
MLC 0.26  ± 0.02 0.10  ± 0.05 0.23  ± 0.03 0.24  ± 0.04 0.15  ± 0.06 
SBT 0.16  ± 0.04 0.12  ± 0.06 0.18  ± 0.04 0.18  ± 0.03 0.12  ± 0.04 
LR 0.26  ± 0.04 0.15  ± 0.03 0.27  ± 0.02 0.30  ± 0.03 0.26  ± 0.05 
LL 0.29  ± 0.04 0.13  ± 0.05 0.22  ± 0.03 0.22  ± 0.04 0.17  ± 0.04 
L 0.23  ± 0.04 0.06  ± 0.04 0.23  ± 0.05 0.23  ± 0.05 0.12  ± 0.05 
ETO 0.25  ± 0.04 0.03  ± 0.06 0.21  ± 0.03 0.22  ± 0.04 0.12  ± 0.02 
BFT 0.27  ± 0.05 0.05  ± 0.07 0.23  ± 0.03 0.25  ± 0.02 0.17  ± 0.01 
PROLOM 0.15  ± 0.07 0.04  ± 0.06 0.19  ± 0.05 0.20  ± 0.06 0.12  ± 0.08 
CY = Carcass yield (%); BFT = Backfat thickness (mm); LR = Midline backfat thickness immediately after the last rib 
(mm); SBT = higher backfat thickness on the shoulder region (mm); ETO = backfat thickness after the last rib, 6.5 cm 
from the midline (mm); LL = midline backfat thickness between last and next to last but one lumbar vertebrae (mm); L = 
midline lower backfat thickness above the last lumbar vertebrae; MBCC = carcass length by the Brazilian carcass 
classification method; MLC = carcass length by the American carcass classification method; PROLOM = diameter of the 
longissimus dorsi muscle in the region of the last rib at 6.5 cm from the dorsolumbar line, from a transverse section in 
the carriage. 

 
For most traits analyzed, the BLASSO, Bagging and Random Forest presented the 

highest values of predictive ability and these values were very similar among the three 
methodologies. The BLASSO highlighted for the CY and LL traits. However, for 
PROLOM, the Random Forest provided the highest predictive ability followed by Bagging. 
The Boosting method did not show superiority in any trait analyzed here, although it 
presented predictive ability values similar to the BLASSO, Bagging and Random Forest for 
the LR. The Bagging method obtained estimates very close to the Random Forest, but did 
not exceed it by any estimate. The Regression Tree method was always inferior to the other 
methods, presenting lower estimates of predictive ability in most traits. 

The BLASSO was chosen to be compared with the tree-based regression methods 
due to the good results that has been obtaining in the GWS. We can cite Teixeira et al. 

http://www.funpecrp.com.br


Genetics and Molecular Research 19 (1): gmr18498 ©FUNPEC-RP www.funpecrp.com.br 

 
 
 
 
 
 

 

Regression trees in genomic selection                                                                 7 

 
 

(2016), who proposed and evaluated the use of factor analysis in the same dataset and 
found that the accuracy in the selection (predictive ability divided by the square root of 
the heritability of the trait) obtained by BLASSO outperformed the other methods 
considered by them. Also, Santos et al. (2018) evaluated three asymmetric traits of this 
same dataset using quantile regression and compared it with the BLASSO, presenting 
the BLASSO with accuracy in the selection similar to those obtained by quantile 
regression. Additionally, the good performance of the BLASSO was expected, 
according with the results observed in the study conducted by de los Campos et al. 
(2009). 

Additionally, the Bagging and Random Forest methods were competitive with 
each other for all traits, which can be explained by the fact that Random Forest is a 
particular case of Bagging. According to James et al. (2013) an improvement in 
prediction using these methods can be obtained by increasing the number of tree 
combinations. However, the disadvantage of this improvement is the loss of 
interpretation in the results. While in the Bagging 237 trees were used, in the Random 
Forest only 79 were used, and, how more trees are used less interpretation we have. 

The inferiority of the Regression Tree method can also be explained by James et 
al. (2013), who say that Regression Tree results are complex which may lead to good 
predictions in the training population, but not so good results in the validation 
population. According to James et al. (2013), an alternative to improve this method is 
obtained by using a reduction in tree construction. This reduction can occur during its 
construction, limiting itself to a region where the division no longer causes a significant 
reduction in the SSR, or alternatively, building a larger tree and, from its, obtain smaller 
trees leading to a lower error rate in the validation. 

Table 3 presents the mean of bias obtained with the cross-validation procedure 
for each trait. The standard error of the mean is also presented. 

 
 

Table 3. Mean of Bias values (regression coefficient) and standard errors in cross validation procedure of 
the BLASSO, Regression Tree, Bagging, Random Forest and Boosting methods for each carcass trait. 
 

Traits BLASSO Regression Tree Bagging Random Forest Boosting 
CY 1.51  ± 0.65 0.10  ± 0.06 0.19  ± 0.11 0.33  ± 0.18 0.04  ± 0.08 
MBCC 1.11  ± 0.30 0.15  ± 0.09 0.72  ± 0.11 0.90  ± 0.17 0.27  ± 0.04 
MLC 0.94  ± 0.12 0.12  ± 0.06 0.77  ± 0.15 0.86  ± 0.15 0.19  ± 0.08 
SBT 1.43  ± 0.45 0.17  ± 0.08 0.74  ± 0.17 0.81  ± 0.17 0.17  ± 0.05 
LR 1.27  ± 0.25 0.18  ± 0.03 0.99  ± 0.16 1.17  ± 0.14 0.35  ± 0.06 
LL 1.23  ± 0.32 0.19  ± 0.10 0.75  ± 0.20 0.81  ± 0.26 0.24  ± 0.08 
L 0.90  ± 0.20 0.06  ± 0.03 0.73  ± 0.19 0.76  ± 0.21 0.15  ± 0.07 
ETO 1.30  ± 0.25 0.05  ± 0.08 0.70  ± 0.13 0.81  ± 0.16 0.16  ± 0.02 
BFT 1.23  ± 0.32 0.06  ± 0.03 0.74  ± 0.17 0.84  ± 0.06 0.22  ± 0.02 
PROLOM 1.93  ± 1.06 0.06  ± 0.09 0.59  ± 0.16 0.73  ± 0.22 0.16  ± 0.11 
CY = Carcass yield (%); BFT = Backfat thickness (mm); LR = Midline backfat thickness immediately after the last rib 
(mm); SBT = higher backfat thickness on the shoulder region (mm); ETO = backfat thickness after the last rib, 6.5 cm 
from the midline (mm); LL = midline backfat thickness between last and next to last but one lumbar vertebrae (mm); L = 
midline lower backfat thickness above the last lumbar vertebrae; MBCC = carcass length by the Brazilian carcass 
classification method; MLC = carcass length by the American carcass classification method; PROLOM = diameter of the 
longissimus dorsi muscle in the region of the last rib at 6.5 cm from the dorsolumbar line, from a transverse section in 
the carriage. 
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The tree-based regression methods overestimated genetic values, with values 
less than 1 (one) for almost all traits except the Random Forest, which underestimated 
this value for the LR trait. The BLASSO method gave, in most traits, bias values greater 
than 1 (one), underestimating these values except for the MLC and L traits where the 
method obtains values smaller than one. Among the tree-based regression methods, 
Boosting and Regression Tree again can be considered inferior because they are the 
methods that presented more biased values for all traits obtaining values farthest from 1 
(one). For CY, MLC and L traits, BLASSO and Random Forest were the methods that 
presented the closest estimates from 1 (one), which is considered the ideal value in the 
GWS studies (Azevedo et al. 2015a). For the LR trait, the Bagging method presented 
the closest value from 1 (one). In addition, for the other six remaining traits, the 
Random Forest method was the one that presented values closest to the ideal. 

Prediction bias is of great importance in genomic selection especially when it 
comes to quantitative traits since selecting individuals with overestimated genetic 
values can lead to large economic losses. The same is true when considering individuals 
with underestimated genetic values. Thus, it is usual to consider bias in GWS studies 
for genetic improvement as in the studies by Azevedo et al. (2015b) in animal breeding 
and Sousa et al. (2019) in plant breeding. 

For quantitative traits Ogutu et al. (2011) compared the Random Forest, 
Boosting and Support Vector Machines methods applied to a simulated dataset and 
concluded that the accuracy of the Boosting method was better, however, these methods 
had little differences between them. Gonzalez-Camacho et al. (2018) make a brief 
discussion about machine learning methods, taking Random Forest as one of the 
methods and conclude that the flexibility of these methodologies allows them to 
become a good alternative to parametric methods like BLASSO. Also, according to 
Gonzalez-Camacho et al. (2018), the Random Forest captures complex feature 
interactions and is robust to overfitting. Gonzalez-Recio et al. (2014) suggest the use of 
Support Vector Machine (SVM) and Random Forest for classification problems and 
Reproducing Kernel Hilbert Space (RKHS) and Boosting for regression problems. 
However, they comment that each study requires a particular study about the traits 
analyzed. 

In addition, in other work using the same dataset, Costa et al. (2015) who 
combined genomic data with pedigree data in the same individuals with carcass and 
growth phenotypic traits and studied the relative importance of additive and dominance 
genetic variation using the G-BLUP model. These authors concluded that dividing 
genetic variance into additive and dominance variance improves knowledge about the 
genetic control of the trait. So far, in our studies we have seen that the Random Forest 
and Bagging methods have obtained better estimates among the tree-based regression 
methods, however, the effects used in the models are only additive. 

A major advantage of tree-based regression methods was their computational 
agility (Table 4). In our study, the computational time of BLASSO was 45% greater 
than Boosting performed with 10,000 trees. However, the computational time for 
Boosting may increase according to the number of trees used. In addition, BLASSO 
execution time was almost five times greater than the Bagging method and more than 
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11 times greater than in Random Forest. The Regression Tree method was the one with 
the shortest computational time, spending less than 4 seconds to analyze all traits. These 
differences in big datasets can become a major problem in studies that need to be done 
quickly. In addition, the number of iterations required for convergence of Markov 
Chains can increase, and consequently, the time to run the BLASSO. In this case, tree-
based regression methods can be more appropriate. 

With respect to GWS in pigs, Samorè and Fontanesi (2016) made a study about 
the advances and difficulties found in recent times. Among the difficulties are the high 
cost of genotyping compared to the individual value of an animal, little time for genetic 
evaluation and pyramidal population structures that affect the number of genotyped and 
phenotyped animals. However, as advantages, the consanguinity control, the selection 
among full siblings, the way of storing biological material and reducing the generation 
interval are improved. In this study it was further emphasized that carcass traits such as 
those studied here have low accuracy and heritability with low or moderate magnitudes. 
This low accuracy may be affected by the size of the training population and its 
proximity to the validation population. 

 
 

Table 4. Computational time values in seconds to perform the analysis of the BLASSO, Regression Tree, 
Bagging, Random Forest and Boosting methods for each trait. 
 

Traits BLASSO Regression Tree Bagging Random Forest Boosting 
CY 168.1 0.4 56.7 23.6 75.7 
MBCC 161.6 0.4 54.5 22.9 72.7 
MLC 171.2 0.4 57.1 23.6 77.1 
SBT 162.4 0.4 54.2 22.9 73.1 
LR 162.5 0.4 55.8 23.4 73.1 
LL 163.3 0.4 55.7 22.9 73.5 
L 149.5 0.4 56.6 24.6 67.3 
ETO 145.8 0.3 56.9 24.7 65.6 
BFT 161.8 0.3 56.3 24.9 72.8 
PROLOM 145.4 0.4 59.7 25.6 65.4 
CY = Carcass yield (%); BFT = Backfat thickness (mm); LR = Midline backfat thickness immediately after the last rib 
(mm); SBT = higher backfat thickness on the shoulder region (mm); ETO = backfat thickness after the last rib, 6.5 cm 
from the midline (mm); LL = midline backfat thickness between last and next to last but one lumbar vertebrae (mm); L = 
midline lower backfat thickness above the last lumbar vertebrae; MBCC = carcass length by the Brazilian carcass 
classification method; MLC = carcass length by the American carcass classification method; PROLOM = diameter of the 
longissimus dorsi muscle in the region of the last rib at 6.5 cm from the dorsolumbar line, from a transverse section in 
the carriage. 

 
Also, in relation to genetic improvement for carcass traits, studies aiming to find 

associations between molecular markers and traits of interest have been proposed and 
used by several authors. Guo et al. (2017) identified 13 suggestive loci in nine 
chromosomes of two commercial breeds that are associated with growth and fatness, 
which the most significant was associated with backfat thickness. In addition, Blaj et al. 
(2018) used association studies to detect genes associated with backfat thickness, met to 
fat ratio and carcass length traits. The study did not identify any more genes than those 
previously identified in the literature, but contributed to improve the genetic map 
resolution of three pig populations. 

http://www.funpecrp.com.br
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CONCLUSIONS 
 
Overall in this study, the best predictive ability values were presented by the 

Random Forest and BLASSO methods. The Random Forest method obtained better bias 
values for most traits. This method also presented computational time approximately 11 
times shorter than the time needed with BLASSO. Thus, we consider the Random Forest 
method as an appropriate alternative for working with genomic datasets. 
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