Predictors of ischemic stroke in elderly patients in Vietnam N.H. Ngoc¹, N.V. Thong², L.X. Hien³, N.Q. An¹ and N.D. Thuan⁴ Corresponding author: N.D. Thuan E-mail: thuanneuro82@gmail.com Genet. Mol. Res. 20 (1): gmr18741 Received December 30, 2019 Accepted April 20, 2020 Final Revision January 25, 2021 Published March 29, 2021 DOI http://dx.doi.org/10.4238/gmr18741 ABSTRACT. We investigated independent predictors of acute ischemic stroke (AIS) in older elderly (>75 years) patients in comparison with those of the elderly (from 60-75 years) in Vietnam. Data are for 308 consecutive AIS patients aged \geq 60 years (138 aged \geq 75 years) admitted to the stroke unit of Phu Tho Hospital from (2014-2017). An assessment of symptoms was also carried out using the NIH Stroke Scale (NIHSS), symptoms, instrumental and laboratory parameters during hospitalization and complications of the underlying disease. The existing predictors of hospital death, trauma, and length of hospital stay were also taken into account. When evaluating the parameters, logistic regression was used. Risk profiles before and after age 75 were compared. Age is a proven, unmodifiable, universal predisposing risk factor for stroke. Poor outcomes were more frequent in the oldest (>75 years) compared to the younger patients (≤75 years). NIHSS score and clinical parameters of AIS severity, including need for oxygen, indwelling catheter, or nasogastric tube), disability incidents, and medical complications predicted most of the outcomes in both age groups. After age 75, AIS etiology and primary clinical signs and symptoms were additional independent determinants for most outcomes, along with age, sex, and pre-stroke functional and health statusThe key factors were mechanical ventilation and pneumonia, and pre-stroke signs during the first three days in the hospital for AIS in the oldest- old (>75 years).; in patients ¹ Phu Tho General Hospital, Viet Nam ² Vietnam Stroke Association ³ Thai Binh Medical University ⁴ Military Hospital 103, Viet Nam Military Medical Academy \leq 75 years, atrial fibrillation was associated with poor outcomes and death at discharge. **Key words:** Acute ischemic stroke; NIHSS score; Elderly person; Predictive factor; Mechanical ventilation; Atrial fibrillation #### INTRODUCTION Acute ischemic stroke (AIS) is one of the most debilitating neurological diseases, imposing an enormous burden on society (Brott and Bogousslavsky, 2000; Mukherjee and Patil, 2011; Leng and Xiong, 2019). It results in decreased quality of life, mortality, increased burden of informal caregivers and high costs to society (Van Exel et al., 2005; Henriksson et al., 2010; Dewilde et al., 2014). Ischemic stroke is the most common type of stroke, accounting for over 85% of all cases. Pathogenetic occurrence of ischemic stroke is explained by obstruction of blood vessels in the brain. Hemorrhagic occurs as a result of weakening and rupture of the wall of a blood vessel and subsequent hemorrhage. The accumulated blood in the surrounding tissues causes further brain damage due to tissue compression. An analysis of statistical data behind the results of numerous studies showed that only a third of patients who had a stroke were aware of its symptoms and consequences. Probably, the low awareness of patients remains one of the reasons for the high level of morbidity and mortality from this pathology. In almost 30% of patients, according to the results of subsequent instrumental techniques, the so-called "quiet, dumb" (asymptomatic) cerebrovascular accident was revealed (Vermeer et al., 2007). Furthermore, the global burden of stroke is high, with a stroke remaining the fourth leading cause of death worldwide, with a particularly large impact in developing nations (Feigin et al., 2009; Johnston et al., 2009). Among different factors that influence to the AIS, there are non-modifiable and modifiable risk factors. Non-modifiable risk factors, also called risk markers, for stroke include age, sex, ethnicity and genetics. In general, stroke is a disease of older people (Chen et al., 2010; Forti et al., 2013). The incidence of stroke increases with age. The mean age of incident ischemic stroke in 2005 was 69.2 years. The relationship of sex to stroke risk depends on age (Kapral et al., 2005; Reeves et al., 2009). The risk of stroke is higher at a young age in women than in men, which is mainly associated with hormonal imbalance as a result of pregnancy, childbirth, and the use of oral contraceptives. (Gillum, 1999; Cruz-Flores et al., 2011). Americans of African descent are at twice the risk of stroke when compared to their white counterparts, and they have higher mortality rates associated with stroke. Genetic factors are also known to be non-modifiable risk factors for stroke; family history increases the risk of stroke. The genetic risks of stroke vary by age, sex and race (Howard and Howard., 2001; Cruz-Flores et al., 2011). Modifiable risk factors appear to be more important and significant, since they are amenable to correction. Among them, there are so-called "traditional" factors that have a proven relationship with subsequent stroke: arterial hypertension, insulin resistance, hyperlipidemia, and tobacco smoking (O'Donnell et al., 2010). In low- and middle-income countries, such as Vietnam, the death rate from stroke is increasing progressively, in line with the trend towards an increase in the number of chronic pathologies (Nguyen et al., 2010; Tirschwell et al., 2012; Pham et al., 2016; Victor et al., 2019). In 10 years, according to the data of the World Health Organization, it is non-communicable pathology that will cause more than three quarters of the world's deaths (World Health Organization, 2005). While data on stroke incidence among populations in high-income countries has declined by more than 40% over the past 40 years, rates have more than doubled in low- and middle-income countries (Avan et al., 2019). In addition, of the 5.7 million stroke deaths worldwide in 2005, 87% occurred in low- and middle-income countries (Strong et al., 2007). Based on the above, the aim of this study was to review independent predictors of ischemic stroke in elderly patients in Vietnam. #### MATERIAL AND METHODS #### **Subject** Ischemic strokes account for about 80-85% of brain strokes, which are the leading cause of death and disability. Its incidence increases with age in elderly patients and very elderly patients (>75 years) (Lui and Nguyen, 2018). To explore independent projections in very elderly patients (>75 years old) compared to elderly patients (aged 60-75 years) with an ischemic stroke, we conducted this study with criteria: Identify independent factors related to the consequences of AIS in people over 75 years old. Object: 308 patients ≥60 years old (138 patients >75 years old), suffered from acute cerebral infarction were treated at Phu Tho General Hospital from (2014 - 2017). #### **Standard selection** The study patients were diagnosed with ischemic stroke according to WHO standards (1989). Clinically, the disease occurs suddenly with focal nerve damage persists for more than 24 hours. Computed tomography (CT) scans or magnetic resonance imaging (MRI) show clinically significant new weight reduction indicators. # Study inclusion criteria Patients 60-75 years old with proven ischemic stroke, from whom written consent was obtained to participate in the study. #### **Exclusion criteria** Patients with transient ischemic attacks (TIAs), cerebral bleeding, brain tumor, traumatic brain injury, encephalitis. Patient disagrees with the study. #### Method Research design: cross-sectional description method. Patients are divided into 2 groups: Group 1: 138 patients >75 years old (patients group); Group 2: 170 patients aged 60-75 (control group). The presented data were obtained using statistical methods (packages SPSS version 22, EZR version 1.38 (Saitama Medical Center, Jichi Medical University). # Information collection technique Patients are examined and assessed according to a unified medical sample: medical history, related factors in the first three days of hospitalization, which aggravate a stroke (NIHSS score, Glasgow score, severity of paralysis, mechanical ventilation, gastric catheterization, catheterization, fever-leukemia increased, complications of pneumonia, urinary inflammation, heart failure, acute renal failure). #### **Subclinical test** Within 24 hours of receiving, all patients underwent CTscan or brain. MRI to rule out brain bleeding and determine the nature and severity of cerebral infarction; do routine blood tests (red blood cells, hemoglobin, hematocrit, white blood cells, leukocyte formula, platelets) and biochemistry (glucose, urea, creatinine, cholesterol, triglycerides, HDL-C, LDL-C, AST, ALT, electrolytes, albumin); ECG; carotid ultrasound; Echocardiography; monitor electrocardiography 24 hours on holter if suspected cause of cardiac occlusion. #### **Treatment** All patients are treated according to a uniform procedure, such as neurological-vascular resuscitation; treatment of complications, taking aspirin100 mg / day or clopidogrel 175 mg / day, if there are no contraindications; rt-PA treatment for 4.5 h or removal of thrombus with mechanical devices for the first 6 h or decompression cranial surgery if indicated; early rehabilitation; prescription of relapse prevention, counseling home care, follow-up appointments periodically. # Analysis and processing of data According to medical statistical methods, SPSS 16.0 software; percentage, tested by the test of χ^2 ; t-Student, 95% confidence, probability is statistically significant when P < 0.05 #### Ethical aspect of the topic All patients or relatives were explained, discussed carefully and voluntarily participated in the study. The procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000. # RESULTS Between two groups (patients group and control group) number of males were 77 (55.8 %) within Group 1 and 101 (59.4 %) – in Group 2. Simultaneously, females were 61 (44.2 %) and 69 (40.6 %) respectively. The reasons for admission were as follows: hemiplegia (93 (67.4 %) vs 101 (59.4 %)); headache (7 (5.1 %) vs 17 (10 %); dizzy (4 (2.9 %) vs 4 (2.4%)); difficulty talking (10 (7.3%) vs. 17 (10 %); dreamy (20 (14.5 %) vs. 23 (13.5%)) and comatose (8 (5.8 %) vs. 12 (7.1%)) for Groups 1 and 2, respectively. There was no significant difference (p > 0.05) in terms of age and gender as well as reasons for admission to the two patient groups. Also, there was no significant difference (p> 0.05) between the treatment time of patients \leq 75 years old and over 75 years old. In particular, duration (in days) of treatment by age group was: <10 (61 (44.2 %) vs. 75 (44.1 %)); 10 – 19 (52 (37.7 %) vs. 66 (38.8 %)); 20 – 29 (19 (13.8 %) vs. 21 (12.4 %)); 30 – 39 (5 (3.6 5) vs. 6 (3.5 %)) and \leq 40 (1 (0.7 %) vs. 2 (1.2 %)). | Table 1 Desdisting | Castana Can a sector | | l 1 | |----------------------------|----------------------|-----------------|-------------------| | Table 1. Predictive | Tactors for acute | : iscnemic siro | ke ny age groun- | | | INCOLO IOI MONIO | TO CITCHE DELO | and of any proup. | | Forecasting factor | >75 years old (n, %) | 60-75 years old (n, %) | P | |-------------------------------|----------------------|------------------------|---------| | Male | 77 (55.8%) | 101 (59.4) | 0.523 | | Hypertension | 125 (90.6%) | 157 (92.4%) | 0.578 | | Diabetes | 20 (14.5%) | 39 (22.9%) | 0.061 | | Metabolic lipid disorders | 53 (38.4%) | 73 (42.9%) | 0.421 | | History of stroke | 37 (26.8%) | 25 (14.7%) | 0.008 | | Support in living | 31 (22.5%) | 21 (12.4%) | 0.018 | | Coronary artery disease | 17 (12.3%) | 10 (5.9%) | 0.047 | | Tin valve disease | 7 (5.1%) | 6 (3.5%) | 0.503 | | Atrial fibrillation | 15 (10.9%) | 8 (4.7%) | 0.041 | | TIA | 28 (20.3%) | 33 (19.4%) | 0.848 | | Obesity (Body Mass Index >30) | 10 (7.3%) | 10 (5.9%) | 0.629 | | Tobacco addiction | 10 (7.3%) | 37 (21.8%) | < 0.001 | | Alcohol abuse | 2 (1.5%) | 10 (5.9%) | 0.046 | | Celibacy | 4 (2.9%) | 3 (1.8%) | 0.386 | | Economic difficulties | 25 (18.1%) | 32 (18.8%) | 0.874 | The proportion of patients over 75 years old had a higher proportion of predictive factors for stroke (stroke history, need for support in daily life, coronary artery disease, atrial fibrillation) than the age group <75 years old (p <0.05); but in patients \leq 75 years old, the rate of tobacco addiction and alcohol abuse was higher (p <0.05) (Table 1). The 49 patients (35.5%) of Group 1 and 45 (26.5%) of Group 2 were admitted to the hospital within 6 days after AIS. The 89 patients (64.5 %) of Group 1 and 125 (73.5%) of Group 2 were admitted to the hospital after 6 days. Their baseline data are presented in Table 2. However, there was no significant difference (p> 0.05) between the frequency of occurrence of predictive factors before treatment and in the first three days of hospitalization in patients in both groups (Table 3). The univariate analysis showed that several predictive factors for stroke were significantly associated (P < 0.05) with worsening and mortality (Table 4), including: In patients >75 years of age: The risk of getting worse and dying is 4.47 times higher if coronary artery disease; 10.71 times with valvular heart disease; 20.83 times with atrial fibrillation; 3.42 times with TIA and 4.47 times if alcohol abuses. In patients \leq 75 years old: The risk of getting worse and dying is 4.12 times higher if they need to support living; 3.57 times for coronary artery disease and 3.54 times for atrial fibrillation. **Table 2.** Predictive factors for stroke for the first three days of hospital stay by age group. | | | >75 years old (n,
%) | 60-75 years old (n, %) | P | |-----------------------------|---------|-------------------------|------------------------|-------| | NIHSS | 0 - 6 | 111 (65.3%) | 71 (51.5%) | 0.043 | | | jul/15 | 30 (17.7%) | 31 (22.5%) | | | | > 15 | 29 (17.1%) | 36 (26.1%) | | | Glasgow | 03/jul | 7 (4.1%) | 9 (6.5%) | 0.630 | | | 08/dez | 44 (25.9%) | 36 (26.1%) | | | | 13 - 15 | 119 (70.0%) | 93 (67.4%) | | | Degree of paralysis (n=287) | 0 | 18 (11.3%) | 19 (15.0%) | 0.001 | | | 1 | 22 (13.8%) | 38 (29.9%) | | | | 2 | 21 (13.1%) | 21 (16.5%) | | | | 3 | 47 (29.4%) | 29 (22.8%) | | | | 4 | 43 (26.9%) | 15 (11.8%) | | | | 5 | 9 (5.6%) | 5 (3.9%) | | | Supplmental oxygen | | 104 (61.2%) | 109 (79.0%) | 0.001 | | Breathing machine | | 17 (10.0%) | 30 (21.7%) | 0.004 | | Stomach catheter | | 23 (13.5%) | 33 (23.9%) | 0.019 | | Urinary catheter | | 14 (8.2%) | 19 (13.8%) | 0.118 | | Fever | | 25 (14.7%) | 31 (22.5%) | 0.079 | | Leukocytosis increased | | 42 (24.7%) | 47 (34.1%) | 0.072 | | Pneumonia | | 31 (18.2%) | 47 (34.1%) | 0.001 | | Urinary infections | | 1 (0.6%) | 1 (0.7%) | 0.696 | | Acute heart failure | | 1 (0.6%) | 2 (1.5%) | 0.422 | | Acute renal failure | | 1 (0.6%) | 3 (2.2%) | 0.237 | **Table 3.** Frequency of prediction risk factors for ischemic stroke by age group. | | Frequency predictor of pre | e-stroke | Frequency of the predictor in the first 72 hours of hospital stay | | | |---------------------------|----------------------------|------------------------|---|------------------------|--| | Frequency forecast factor | >75 years old (n, %) | 60-75 years old (n, %) | >75 years old (n, %) | 60-75 years old (n, %) | | | 0 | 1 (0.7%) | 0 | 4 (2.9%) | 2 (1.2%) | | | 1 | 29 (21.0%) | 33 (194%) | 17 (12.3%) | 20 (11.8%) | | | 2 | 43 (31.2%) | 45 (26.5%) | 31 (22.5%) | 56 (32.9%) | | | 3 | 28 (20.3%) | 54 (31.8%) | 19 (13.8%) | 36 (21.2%) | | | 4 | 17 (12.3%) | 22 (12.9%) | 22 (15.9%) | 20 (11.8%) | | | 5 | 10 (7.3%) | 10 (5.9%) | 8 (5.8%) | 11 (6.5%) | | | 6 | 7 (5.1%) | 4 (2.4%) | 12 (8.7%) | 6 (3.5%) | | | 7 | 0 | 0 | 9 (6.5%) | 7 (4.1%) | | | 8 | 2 (1.5%) | 1 (0.6%) | 6 (4.4%) | 7 (4.1%) | | | 9 | 1 (0.7%) | 1 (0.6%) | 6 (4.4%) | 3 (1.8%) | | | 10 | ` / | ` ′ | 4 (2.9%) | 2 (1.2%) | | | | P = 0.366 | | P = 0.142 | ` ' | | Based on logistic regression method in the group of patients over 75 years old, pneumonia and acute respiratory failure, requiring artificial ventilation, were independent predictors of a poor prognosis. The group of patients over 75 years of age who need support in daily activities is an independent prognosis factor with a 3.51 times higher risk of death. The univariate analysis showed that several predictive factors during the first three days of hospitalization were significantly associated (P < 0.05) with worsening morbidity and mortality including: In patients over 75 years of age, the risk of getting worse, death is 7.48 times higher if the NIHSS score is >15 points; 9.84 times if there is Glasgow <13 points; 556.25 times if mechanical ventilation; 135.94 times if stomach catheterization; 53.21 times with Urinary catheterization; 9.63 times with fever; 13.90 times if leukocytes increases and 16.93 times if pneumonia. In patients \leq 75 years old, the risk of getting worse, death is 5.83 times higher if there are NIHSS scores \geq 15 points; 6.45 times if Glasgow \leq 13 points; 4.10 times if oxygen is needed: 52.0 times if mechanical ventilation; 38.45 times if gastric catheterization; 39.67 times if Urinary catheterization; 8.99 times if the fever; 9.82 times if leukocytes increase and 18.31 times if pneumonia complications. **Table 4.** Relationship between some predictive factors for stroke and worsening / death from stroke in the two age groups. | Forecasting factor | >75 years old (n, %) | | | | 60-75 years old (n, %) | | | | |------------------------------|----------------------|-------|----------------------|-------|------------------------|-------|----------------------|-------| | | OR raw (95% CI) | P | OR correct. (95% CI) | P | OR raw (95% CI) | P | OR correct. (95% CI) | P | | Male | 1.13 (0.5-2.4) | 0.761 | 1.10 (0.5-2.7) | 0.834 | 2.40 (0.7-7.8) | 0.132 | 5.12 (0.8-31.0) | 0.076 | | Hypertension | 0.84 (0.2-2.9) | 0.785 | 1.0 (0.2-4.2) | 0.993 | 1.36 (0.2-11.2) | 0.774 | 0.73 (0.1-9.6) | 0.813 | | Diabetes | 0.62 (0.2-2.0) | 0.416 | 0.65 (0.2-2.3) | 0.512 | 1.04 (0.3-3.4) | 0.952 | 1.58 (0.3-7.3) | 0.556 | | Metabolic lipid
disorders | 0.91 (0.4-2.0) | 0.817 | 0.71 (0.3-1.7) | 0.441 | 0.92 (0.3-2.6) | 0.877 | 0.65 (0.2-2.7) | 0.552 | | AIS history | 1.95 (0.9-4.4) | 0.102 | 1.77 (0.7-4.5) | 0.239 | 1.28 (0.3-4.8) | 0.719 | 0.96 (0.2-5.5) | 0.960 | | Living support | 4.12 (1.7-10.0) | 0.001 | 3.51 (1.2-10.4) | 0.024 | 2.46 (0.7-8.5) | 0.141 | 2.13 (0.3-14.7) | 0.442 | | Coronary artery disease | 3.57 (1.2-10.4) | 0.012 | 1.64 (0.4-7.5) | 0.525 | 4.47 (1.0-19.7) | 0.030 | 0.98 (0.1-14.5) | 0.989 | | Heart valve
disease | 2.06 (0.4-9.8) | 0.353 | 0.80 (0.1-5.8) | 0.822 | 10.71 (1.9-61.9) | 0.001 | 6.66 (0.5-93.5) | 0.160 | | Atrial fibrillation | 3.54 (1.2-10.9) | 0.018 | 1.91 (0.4-9.2) | 0.421 | 20.83 (3.8-112.3) | 0.001 | 72.05 (7.0-7.42) | 0.001 | | TIA | 1.99 (0.8-4.8) | 0.120 | 0.85 (0.2-2.9) | 0.792 | 3.42 (1.2-10.0) | 0.017 | 3.96 (0.9-17.9) | 0.073 | | Fat | 0.64 (0.1-3.2) | 0.581 | 0.79 (0.2-4.2) | 0.784 | 2.42 (0.5-12.6) | 0.279 | 5.17 (0.6-44.7) | 0.136 | | Tobacco
addiction | 1.84 (0.5-7.0) | 0.361 | 2.91 (0.6-14.1) | 0.183 | 1.58 (0.5-4.8) | 0.422 | 0.76 (0.1-4.8) | 0.770 | | Alcohol abuse | - | 0.382 | - | | 4.47 (1.0-19.7) | 0.030 | 2.26 (0.2-25.3) | 0.508 | | Celibacy | 0.87 (0.1-8.7) | 0.909 | 0.79 (0.1-10.6) | 0.856 | - | 0.561 | - | | | Economic difficulties | 2.02 (0.8-5.1) | 0.125 | 1.59 (0.5-5.0) | 0.423 | 1.94 (0.6-6.0) | 0.241 | 1.80 (0.4-8.0) | 0.439 | | Hospitalization >6h | 1.27 (0.6-2.8) | 0.554 | 3.34 (0.6-19.8) | 0.183 | 0.85 (0.3-2.6) | 0.773 | 1.79 (0.1-17.5) | 0.675 | | NIHSS> 15 | 5.83 (2.4-14.3) | 0.001 | 0.79 (0.1-6.2) | 0.825 | 7.48 (2.4-23.0) | 0.001 | 2.98*10-8 | 0.996 | | Glasgow <13 | 6.45 (2.6-15.7) | 0.001 | 3.53 (0.6-22.2) | 0.179 | 9.84 (2.8-3.6) | 0.001 | 7.65*10-7 | 0.998 | | Paralysis: 0, 1, 2 | 0.15 (0.1-0.5) | 0.001 | 0.3 (0-3.1) | 0.341 | - | | - | | | | 4.10 (1.1-14.9) | 0.020 | 0.96 (0.1-13.4) | 0.976 | - | | - | | | Supplemental
oxygen | 52.0 (9.5-183.9) | 0.001 | 22.71 (1.9-265.1) | 0.013 | 556.25 (9.2-3485) | 0.001 | 1.49*10-5 | 0.997 | | Mechanical
ventilation | 38.45 (8.7-169.7) | 0.001 | 1.93 (0.2-20.0) | 0.580 | 135.94 (12.4-1493) | 0.001 | 14.09 (0.3-626.1) | 0.172 | | Stomach
catheter | 39.67 (6.2-253.7) | 0.001 | 3.79 (0.3-46.2) | 0.297 | 53.21 (9.2-309.1) | 0.001 | 6.67 (0.2-222.7) | 0.289 | | Urinary catheter | 8.99 (3.3-24.5) | 0.001 | 0.60 (0.1-5.0) | 0.638 | 9.63 (3.0-30.9) | 0.001 | 0.05 (0-4.7) | 0.197 | | Fever | 9.82 (3.7-26.1) | 0.001 | 0.46 (0.1-4.2) | 0.493 | 13.90 (3.8-51.2) | 0.001 | 6.32 (0.1-287.8) | 0.344 | | Leukocytosis
increased | 18.31 (5.7-58.4) | 0.001 | 19.90 (2.5-156.6) | 0.004 | 16.93 (4.7-61.6) | 0.001 | 14.2 (0.4-561.2) | 0.156 | | Acute heart
failure | 5.50 (0.5-64.4) | 0.126 | 20.23 (0.6-650.1) | 0.089 | | | | | However, after logistic multivariate regression analysis, in the group of patients over 75 years old, only the factor of mechanical ventilation and pneumonia are an independent prognosis factor with severe condition, death increased to 22.71 times if mechanical ventilation and 19.90 times if complications of pneumonia; in patients \leq 75 years of age, prognostic factors independently of the worsening and death have not been found There was a significant difference (P < 0.001, chi – squared test) between discharge status after 6 months by age group. Patients ≤ 75 years old with higher stability, recurrence and death are lower than patients over 75 years old (Table 5). **Table 5.** Condition of patients who had ischemic stroke after six months of discharge from hospital in the two groups. | Status of discharge from hospital after 6 months | >75 years old (n, %) | 60-75 years old (n, %) | P | |--|----------------------|------------------------|-----------| | Stability | 47 (48.0%) | 132 (87.4%) | | | Occur again periodically | 29 (29.6%) | 14 (9.3%) | P < 0.001 | | Dead | 22 (22.5%) | 5 (3.3%) | | #### DISCUSSION #### Factors predicting stroke by age group Stroke is a leading cause of death and motor disability, a major contributor to increased health care costs. The risk of stroke increases with life expectancy, according to the statistics, the oldest subjects (\geq 75 years old) with a stroke account for more than 1/3 of the hospitalizations, they have mortality rates and disability. The risk of developing a stroke is higher, because it is often ignored in clinical trials and there is very little information about the causes of stroke. On the other hand, patients in this age group have less stamina and are more difficult to recover after being sick due to aging over time. According to our research results, there was a significant difference between the rates of several stroke prediction factors by age group. Patients younger than 75 years old have a lower rate of stroke, need support in life, coronary artery disease, and atrial fibrillation but have a higher rate of smoking, alcohol abuse than patients >75 years old. Patients >75 years old, risk of getting worse, dying in supportive life, coronary artery disease, atrial fibrillation. But in the logistic multivariate regression analysis, in the patients age <75 years, only AF factor is an independent prognostic factor with aggravation and death, in patients >75 years of age, support for living is Independent prognostic factor with aggravation and death (Table 4). There was a statistically significant difference between several predictive factors in the first three days of hospitalization by age group. Patients >75 years of age had high NIHSS scores, oxygen, mechanical ventilation, gastric catheterization, and pneumonia complications were higher than those aged \leq 75 years. After multivariate logistic regression analysis, in the >75-year-old patient group, only the mechanical ventilation and pneumonia factors were independent prognostic factors with worsening and death. In patients younger than 75 years of age, independent prognostic factors have not been found to be exacerbated or fatal (Table 4). # The predictor for the first three days of hospital stay Some factors predicting the severity of illness and death in the first three days of hospitalization are statistically: oxygen support at 69.2%, Glasgow score (<13 points 31.2%, <8 points 5.2 %, 8-12 points 26.0%), the proportion of patients with risk factors is (2 factors 28.3%, 3 factors 17.9%). It is well known that the patient had two factors that were clearly related to death, coma on admission and advanced age. Investigated the association between several major risk factors and mortality in patients after 5 years of stroke includes cardiovascular disease. The chance of surviving after 5 years is only 25%, if they only have 1 of these 2 risk factors, then the chance of surviving after 5 years is 50% and without both of these risk factors then the 5-year survival rate is 75%. When multivariate regression analysis related to mortality, of the 10 factors, only 3 factors were a coma, muscular disorders and increased systolic blood pressure when hospitalized related to mortality within one year after a stroke (P < 0.05). Le Tu Phuong Thao when studying the prognosis of the following circulating NMN showed as follows: age >75 years, consciousness disorder (mild or severe) and cardiac embolism mechanism related to poor prognosis at discharge. Tran Thanh Hung and Vu Anh Nhi found that two factors with independent predictive mortality were Glasgow score and vertical doll eye reflex before incubation (P < 0.005). We recognize that the above factors need special attention in evaluating and establishing an active treatment regimen for patients to reduce death and disability. #### Several factors related to the outcome of treatment Statistical results showed a significant relationship (P < 0.05) between the age of the patient and the condition of exiting stroke unit. Patients aged 60-69 years are at risk of getting worse / dying less than 2.54 times 70-79 years old, 4.03 times 80-89 years old and 9.50 times younger than 90 years old. It can be seen that, in the elderly, the process of recovery will become more difficult due to the aging according to the age of the body's organs, so the older the patient's recovery and remission rate is, the lower the higher the death rate. When patients have many risk factors at the same time, the condition of hospital discharge rate will be higher or death rates will be higher. The study showed that if one factor was increased, the risk of getting worse / death at the time of the stroke increased by 1.50 times. However, after 6 months of discharge, we did not find a statistically significant relationship (P > 0.05) between the frequency of occurrence of risk factors before a stroke and the condition 6 months after discharge. Some risk factors in the first three days of hospital stay include as follows: Patients with NIHSS scores from 0-6 points have an increased risk of death / death 2.45 times lower than patients with NIHSS from 7-15 points and 8.97 times lower than in patients with NIHSS >15 points. Baird et al. (2001), Dawodu and Danesi (2005), Sato et al. (2008) appreciate the role of the NIHSS scale in assessing the severity of stroke. The higher the NIHSS patients' score, the higher the odds of death or death. Patients 6 months after discharge from the hospital with NIHSS score from 0-15 points have a lower risk of death by 4.64 times than patients with NIHSS >15 points. The predicted value of the Glasgow scale is also shown when examining the odds ratio: If taking patients with Glasgow scores from 13-15 points as a group for comparison (OR = 1), the remaining two groups are Glasgow from 3 -7 points and Glasgow from -12 points respectively have an OR of 46.7 and an OR of 4.62. Thus, if patients with Glasgow score of 13-15 points are at risk of aggravation / death lower than 4.62 times for patients with Glasgow from 8-12 points and 46.7 times lower for patients with Glasgow from 3 -7 points. Our results are similar to those of Miah MT et al. When evaluating stroke patients with a score of Glasgow from 3-8 points with a death rate of 12.07%, Glasgow with a score of 13-15 points without a patient dead. Hamidon and Raymond studied 218 patients with a stroke (163BNN) found that in NMN group, the score of Glasgow less than 9 points had significant prognosis and death 3.9 times (OR = 3.9; 95% CI 1.01- 14.6) compared to a team with a Glasgow score of over 9 points. About the degree of paralysis: patients with paralysis (0, 1, 2) have a 16.13 times higher risk of death / death from the stroke unit (3, 4, 5). And after 6 months, patients with paralysis (3, 4, 5) have a 0.43 times lower risk of dying (0, 1, 2). Patients who undergo supplemental oxygen, mechanical ventilation, gastric catheterization, catheterization are at greater risk of death / death than those who do not receive oxygen, do not receive mechanical ventilation, do not place gastric catheter and catheter. Patients with fever, leukocytosis, and pneumonia also have a higher risk of death / death than patients without these symptoms (P < 0.05). There was a statistically significant relationship (P < 0.05) between the frequency of occurrence of risk factors in the first three days of hospital stay and the time of exiting stroke unit and after 6 months of hospital discharge if the increased risk of death / death from a stroke increases with a predisposing factor. # **CONCLUSIONS** Some important conclusions could be drawn. Firstly, a number of factors exacerbate and contribute to poor outcomes in patients over 75 years of age with acute ischemic stroke. Predictive factors leading to aggravation of illness and death include as follows: daily life support, coronary artery disease, valvular heart disease, atrial fibrillation, TIA attacks, alcohol abuse; Multivariate logistic regression analysis supported patient lifestyle as an independent prognostic factor that exacerbates illness or death at discharge. Predictive factors in the first three days of hospitalization that aggravate illness and death included as follows: NIHSS score >15 points, Glasgow <13 points, paralysis (0 - 2), assisted oxygen, mechanical ventilation, tube placement gastric catheter, catheterization, fever-leukemia increased, pneumonia complications; Multivariate logistic regression analysis that included only mechanical ventilation and pneumonia was an independent prognostic factor with exacerbation and death upon discharge. The six-month post-discharge postpartum: the patients over 75 years of age are stable, the recurrence and death are lower than the 75-year-old groups or younger. #### **ACKNOWLEDGMENTS** The authors are grateful to Phu Tho General Hospital for making the study possible through financial assistance. #### CONFLICTS OF INTEREST The authors declare no conflict of interest. ### REFERENCES - Avan A, Digaleh H, Di Napoli M, Stranges S, et al. (2019). Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: An ecological analysis from the global burden of disease study 2017. BMC Med. 17: 191 - Baird AE, Dambrosia J, Janket SJ, Eichbaum Q, et al. (2001). A three-item scale for the early prediction of stroke recovery. The Lancet. 357(9274): 2095-2099. - Brott T and Bogousslavsky J (2000). Treatment of acute ischemic stroke. N. Engl. J. Med. 343(10): 710-722. - Chen RL, Balami JS, Esiri MM, Chen LK, et al. (2010). Ischemic stroke in the elderly: an overview of evidence. *Nat. Rev. Neurol.* 6(5): 256-265. - Cruz-Flores S, Rabinstein A, Biller J, Elkind MS, et al. (2011). Racial-ethnic disparities in stroke care: the American experience: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 42(7): 2091-2116. - Cruz-Flores S, Rabinstein A, Biller J, Elkind MS, et al. (2011). Racial-ethnic disparities in stroke care: the American experience: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 42(7): 2091-2116. - Danesi M and Dawodu L (2005). The influence of admitting National Institute of Health Stroke Scale [NIHSS] on prognosis of ischaemic stroke in Lagos. *J. Neurol. Sci.* 238: 391-392. - Dawson J, Lees JS, Chang T-P, Walters MR, et al. (2007). Association between disability measures and healthcare costs after initial treatment for acute stroke. *Stroke*. 38: 1893-1898. - Dewilde S, Thijs V, Annemans L, Peeters A, et al. (2014). Quality of life decrements after stroke. *Value in Health.* 17: A331. - Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, et al. (2009). Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. *Lancet Neurol.* 8(4): 355-369. - Forti P, Maioli F, Procaccianti G, Nativio V, et al. (2013). Independent predictors of ischemic stroke in the elderly: prospective data from a stroke unit. *Neurology*. 80(1): 29-38. - Gillum RF (1999). Stroke mortality in blacks: disturbing trends. Stroke. 30(8): 1711-1715. - Henriksson KM, Farahmand B, Johansson S, Åsberg S, et al. (2010). Survival after stroke the impact of CHADS2 score and atrial fibrillation. *Int. J. Cardiol.* 141: 18-23. - Howard G and Howard VJ (2001). Ethnic disparities in stroke: the scope of the problem. Ethn. Dis. 11(4): 761-768. - Johnston SC, Mendis S and Mathers CD (2009). Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. *Lancet Neurol*. 8(4): 345-354. - Kapral MK, Fang J, Hill MD, Silver F, et al. (2005). Sex differences in stroke care and outcomes: results from the Registry of the Canadian Stroke Network. *Stroke*. 36(4): 809-814. - Leng T and Xiong ZG (2019). Treatment for ischemic stroke: From thrombolysis to thrombectomy and remaining challenges. *Brain Circ*. 5(1): 8-11. - Lui S and Nguyen MH (2018). Elderly Stroke Rehabilitation: Overcoming the Complications and Its Associated Challenges. Curr Gerontol Geriatr Res. 2018: 9853837. doi: 10.1155/2018/9853837. - Mukherjee D and Patil CG (2011). Epidemiology and the global burden of stroke. W. Neurosurg. 76(6): 85-90. - Nguyen T, Truong A, Ngo M, Bui C, et al. (2010). Patients with thrombolysed stroke in Vietnam have an excellent outcome: Results from the vietnam thrombolysis registry. *Eur. J. Neurol*. 17: 1188-1192. - O'Donnell MJ, Serpault DX, Xiufeng L, Zhang HY, et al. (2010). Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. *Lancet*. 376(9735): 112-123 - Pham TL, Blizzard L, Srikanth V, Thrift AG, et al. (2016). Case-fatality and functional status three months after firstever stroke in Vietnam. *J. Neurolog. Sci.* 365: 65-71. - Reeves MJ, Fonarow GC, Zhao X, Smith EE, et al. (2009). Quality of care in women with ischemic stroke in the GWTG program. *Stroke*. 40(4): 1127-1133. - Sato S, Toyoda K, Uehara T, Toratani N, et al. (2008). Baseline NIH Stroke Scale Score predicting outcome in anterior and posterior circulation strokes. *Neurology*. 70(24 Part 2): 2371-2377. - Strong K, Mathers C and Bonita R (2007). Preventing stroke: Saving lives around the world. *The Lancet Neurol*. 6: 182-187. - Tirschwell DL, Ton TG, Ly KA, Van Ngo Q, et al. (2012). A prospective cohort study of stroke characteristics, care, and mortality in a hospital stroke registry in Vietnam. *BMC Neurol*. 12: 150. - Van Exel N, Koopmanschap M, van den Berg B, Brouwer W, et al. (2005). Burden of informal caregiving for stroke patients. *Cerebrovasc. Dis.* 19: 11-17. - Vermeer SE, Longstreth Jr WT and Koudstaal PJ (2007). Silent brain infarcts: a systematic review. *Lancet Neurol.* 6(7): 611-619. - Victor G, Sommer J and Khan FH (2019). 21st century nurse's role in decreasing the rising burden of cardiovascular disease. *Anaesth. Pain Int. Care.* 2019: 503-510. - World Health Organization, Public Health Agency of Canada. (2005). *Preventing chronic diseases: A vital investment.* Geneva, Ottawa: World Health Organization; Public Health Agency of Canada.